Class: BigDecimal
- Inherits:
-
Numeric
- Object
- Numeric
- BigDecimal
- Defined in:
- ext/bigdecimal/bigdecimal.c,
lib/bigdecimal/util.rb,
ext/bigdecimal/bigdecimal.c
Overview
BigDecimal provides arbitrary-precision floating point decimal arithmetic.
Introduction
Ruby provides built-in support for arbitrary precision integer arithmetic.
For example:
42**13 #=> 1265437718438866624512
BigDecimal provides similar support for very large or very accurate floating point numbers.
Decimal arithmetic is also useful for general calculation, because it provides the correct answers people expect–whereas normal binary floating point arithmetic often introduces subtle errors because of the conversion between base 10 and base 2.
For example, try:
sum = 0
10_000.times do
sum = sum + 0.0001
end
print sum #=> 0.9999999999999062
and contrast with the output from:
require 'bigdecimal'
sum = BigDecimal("0")
10_000.times do
sum = sum + BigDecimal("0.0001")
end
print sum #=> 0.1E1
Similarly:
(BigDecimal(“1.2”) - BigDecimal(“1.0”)) == BigDecimal(“0.2”) #=> true
(1.2 - 1.0) == 0.2 #=> false
A Note About Precision
For a calculation using a BigDecimal and another value, the precision of the result depends on the type of value:
-
If
valueis a Float, the precision is Float::DIG + 1. -
If
valueis a Rational, the precision is larger than Float::DIG + 1. -
If
valueis a BigDecimal, the precision isvalue‘s precision in the internal representation, which is platform-dependent. -
If
valueis other object, the precision is determined by the result of BigDecimal(value).
Special features of accurate decimal arithmetic
Because BigDecimal is more accurate than normal binary floating point arithmetic, it requires some special values.
Infinity
BigDecimal sometimes needs to return infinity, for example if you divide a value by zero.
BigDecimal(“1.0”) / BigDecimal(“0.0”) #=> Infinity BigDecimal(“-1.0”) / BigDecimal(“0.0”) #=> -Infinity
You can represent infinite numbers to BigDecimal using the strings 'Infinity', '+Infinity' and '-Infinity' (case-sensitive)
Not a Number
When a computation results in an undefined value, the special value NaN (for ‘not a number’) is returned.
Example:
BigDecimal(“0.0”) / BigDecimal(“0.0”) #=> NaN
You can also create undefined values.
NaN is never considered to be the same as any other value, even NaN itself:
n = BigDecimal(‘NaN’) n == 0.0 #=> false n == n #=> false
Positive and negative zero
If a computation results in a value which is too small to be represented as a BigDecimal within the currently specified limits of precision, zero must be returned.
If the value which is too small to be represented is negative, a BigDecimal value of negative zero is returned.
BigDecimal(“1.0”) / BigDecimal(“-Infinity”) #=> -0.0
If the value is positive, a value of positive zero is returned.
BigDecimal(“1.0”) / BigDecimal(“Infinity”) #=> 0.0
(See BigDecimal.mode for how to specify limits of precision.)
Note that -0.0 and 0.0 are considered to be the same for the purposes of comparison.
Note also that in mathematics, there is no particular concept of negative or positive zero; true mathematical zero has no sign.
bigdecimal/util
When you require bigdecimal/util, the #to_d method will be available on BigDecimal and the native Integer, Float, Rational, and String classes:
require ‘bigdecimal/util’
42.to_d # => 0.42e2
0.5.to_d # => 0.5e0
(2/3r).to_d(3) # => 0.667e0
"0.5".to_d # => 0.5e0
License
Copyright © 2002 by Shigeo Kobayashi <[email protected]>.
BigDecimal is released under the Ruby and 2-clause BSD licenses. See LICENSE.txt for details.
Maintained by mrkn <[email protected]> and ruby-core members.
Documented by zzak <[email protected]>, mathew <[email protected]>, and many other contributors.
Constant Summary collapse
- VERSION =
The version of bigdecimal library
rb_str_new2(RUBY_BIGDECIMAL_VERSION)
- BASE =
Base value used in internal calculations. On a 32 bit system, BASE is 10000, indicating that calculation is done in groups of 4 digits. (If it were larger, BASE**2 wouldn’t fit in 32 bits, so you couldn’t guarantee that two groups could always be multiplied together without overflow.)
INT2FIX((SIGNED_VALUE)VpBaseVal())
- EXCEPTION_ALL =
Determines whether overflow, underflow or zero divide result in an exception being thrown. See BigDecimal.mode.
0xff- EXCEPTION_NaN =
Determines what happens when the result of a computation is not a number (NaN). See BigDecimal.mode.
0x02- EXCEPTION_INFINITY =
Determines what happens when the result of a computation is infinity. See BigDecimal.mode.
0x01- EXCEPTION_UNDERFLOW =
Determines what happens when the result of a computation is an underflow (a result too small to be represented). See BigDecimal.mode.
0x04- EXCEPTION_OVERFLOW =
Determines what happens when the result of a computation is an overflow (a result too large to be represented). See BigDecimal.mode.
0x01- EXCEPTION_ZERODIVIDE =
Determines what happens when a division by zero is performed. See BigDecimal.mode.
0x10- ROUND_MODE =
Determines what happens when a result must be rounded in order to fit in the appropriate number of significant digits. See BigDecimal.mode.
0x100- ROUND_UP =
Indicates that values should be rounded away from zero. See BigDecimal.mode.
1- ROUND_DOWN =
Indicates that values should be rounded towards zero. See BigDecimal.mode.
2- ROUND_HALF_UP =
Indicates that digits >= 5 should be rounded up, others rounded down. See BigDecimal.mode.
3- ROUND_HALF_DOWN =
Indicates that digits >= 6 should be rounded up, others rounded down. See BigDecimal.mode.
4- ROUND_CEILING =
Round towards +Infinity. See BigDecimal.mode.
5- ROUND_FLOOR =
Round towards -Infinity. See BigDecimal.mode.
6- ROUND_HALF_EVEN =
Round towards the even neighbor. See BigDecimal.mode.
7- SIGN_NaN =
Indicates that a value is not a number. See BigDecimal.sign.
0- SIGN_POSITIVE_ZERO =
Indicates that a value is +0. See BigDecimal.sign.
1- SIGN_NEGATIVE_ZERO =
Indicates that a value is -0. See BigDecimal.sign.
-1- SIGN_POSITIVE_FINITE =
Indicates that a value is positive and finite. See BigDecimal.sign.
2- SIGN_NEGATIVE_FINITE =
Indicates that a value is negative and finite. See BigDecimal.sign.
-2- SIGN_POSITIVE_INFINITE =
Indicates that a value is positive and infinite. See BigDecimal.sign.
3- SIGN_NEGATIVE_INFINITE =
Indicates that a value is negative and infinite. See BigDecimal.sign.
-3- INFINITY =
Special value constants
BIGDECIMAL_POSITIVE_INFINITY- NAN =
BIGDECIMAL_NAN
Class Method Summary collapse
-
._load(str) ⇒ Object
Internal method used to provide marshalling support.
-
.double_fig ⇒ Integer
Returns the number of digits a Float object is allowed to have; the result is system-dependent:.
- .interpret_loosely(str) ⇒ Object
-
.limit(*args) ⇒ Object
BigDecimal.limit(digits).
-
.mode(mode, setting = nil) ⇒ Integer
Returns an integer representing the mode settings for exception handling and rounding.
-
.save_exception_mode { ... } ⇒ Object
Execute the provided block, but preserve the exception mode.
-
.save_limit { ... } ⇒ Object
Execute the provided block, but preserve the precision limit.
-
.save_rounding_mode { ... } ⇒ Object
Execute the provided block, but preserve the rounding mode.
Instance Method Summary collapse
-
#% ⇒ Object
%: a%b = a - (a.to_f/b).floor * b.
- #*(r) ⇒ Object
-
#**(other) ⇒ Object
Returns the BigDecimal value of
selfraised to powerother:. -
#+(value) ⇒ Object
Returns the BigDecimal sum of
selfandvalue:. -
#+ ⇒ self
Returns
self:. -
#-(value) ⇒ Object
Returns the BigDecimal difference of
selfandvalue:. -
#- ⇒ Object
Returns the BigDecimal negation of self:.
-
#/ ⇒ Object
For c = self/r: with round operation.
-
#<(other) ⇒ Boolean
Returns
trueifselfis less thanother,falseotherwise:. -
#<=(other) ⇒ Boolean
Returns
trueifselfis less or equal to thanother,falseotherwise:. -
#<=>(r) ⇒ Object
The comparison operator.
-
#==(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
-
#===(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
-
#>(other) ⇒ Boolean
Returns
trueifselfis greater thanother,falseotherwise:. -
#>=(other) ⇒ Boolean
Returns
trueifselfis greater than or equal toother,falseotherwise:. -
#_dump ⇒ String
Returns a string representing the marshalling of
self. -
#abs ⇒ Object
Returns the BigDecimal absolute value of
self:. -
#add(value, ndigits) ⇒ Object
Returns the BigDecimal sum of
selfandvaluewith a precision ofndigitsdecimal digits. -
#ceil(*args) ⇒ Object
ceil(n).
- #clone ⇒ Object
-
#coerce(other) ⇒ Object
The coerce method provides support for Ruby type coercion.
-
#div(*args) ⇒ Object
call-seq: div(value) -> integer div(value, digits) -> bigdecimal or integer.
-
#divmod(r) ⇒ Object
divmod(value).
- #dup ⇒ Object
-
#eql?(r) ⇒ Boolean
Tests for value equality; returns true if the values are equal.
-
#exponent ⇒ Object
Returns the exponent of the BigDecimal number, as an Integer.
-
#finite? ⇒ Boolean
Returns True if the value is finite (not NaN or infinite).
-
#fix ⇒ Object
Return the integer part of the number, as a BigDecimal.
-
#floor(*args) ⇒ Object
floor(n).
-
#frac ⇒ Object
Return the fractional part of the number, as a BigDecimal.
-
#hash ⇒ Integer
Returns the integer hash value for
self. -
#infinite? ⇒ Boolean
Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity.
-
#inspect ⇒ Object
Returns a string representation of self.
-
#modulo ⇒ Object
%: a%b = a - (a.to_f/b).floor * b.
-
#mult(other, ndigits) ⇒ Object
Returns the BigDecimal product of
selfandvaluewith a precision ofndigitsdecimal digits. -
#n_significant_digits ⇒ Integer
Returns the number of decimal significant digits in
self. -
#nan? ⇒ Boolean
Returns True if the value is Not a Number.
-
#nonzero? ⇒ Boolean
Returns self if the value is non-zero, nil otherwise.
-
#power(*args) ⇒ Object
power(n) power(n, prec).
-
#precision ⇒ Integer
Returns the number of decimal digits in
self:. -
#precision_scale ⇒ Array
Returns a 2-length array; the first item is the result of BigDecimal#precision and the second one is of BigDecimal#scale.
-
#precs ⇒ Array
Returns an Array of two Integer values that represent platform-dependent internal storage properties.
-
#quo(*args) ⇒ Object
Divide by the specified value.
-
#remainder ⇒ Object
remainder.
-
#round(*args) ⇒ Object
round(n, mode).
-
#scale ⇒ Integer
Returns the number of decimal digits following the decimal digits in
self. -
#sign ⇒ Object
Returns the sign of the value.
-
#split ⇒ Object
Splits a BigDecimal number into four parts, returned as an array of values.
-
#sqrt(nFig) ⇒ Object
sqrt(n).
-
#sub(b, n) ⇒ Object
sub(value, digits) -> bigdecimal.
-
#to_d ⇒ Object
call-seq: a.to_d -> bigdecimal.
-
#to_digits ⇒ Object
call-seq: a.to_digits -> string.
-
#to_f ⇒ Object
Returns a new Float object having approximately the same value as the BigDecimal number.
-
#to_i ⇒ Object
Returns the value as an Integer.
-
#to_int ⇒ Object
Returns the value as an Integer.
-
#to_r ⇒ Object
Converts a BigDecimal to a Rational.
-
#to_s(*args) ⇒ Object
to_s(s).
-
#truncate(*args) ⇒ Object
truncate(n).
-
#zero? ⇒ Boolean
Returns True if the value is zero.
Class Method Details
._load(str) ⇒ Object
Internal method used to provide marshalling support. See the Marshal module.
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 |
# File 'ext/bigdecimal/bigdecimal.c', line 590 static VALUE BigDecimal_load(VALUE self, VALUE str) { ENTER(2); Real *pv; unsigned char *pch; unsigned char ch; unsigned long m=0; pch = (unsigned char *)StringValueCStr(str); /* First get max prec */ while((*pch) != (unsigned char)'\0' && (ch = *pch++) != (unsigned char)':') { if(!ISDIGIT(ch)) { rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string"); } m = m*10 + (unsigned long)(ch-'0'); } if (m > VpBaseFig()) m -= VpBaseFig(); GUARD_OBJ(pv, VpNewRbClass(m, (char *)pch, self, true, true)); m /= VpBaseFig(); if (m && pv->MaxPrec > m) { pv->MaxPrec = m+1; } return VpCheckGetValue(pv); } |
.double_fig ⇒ Integer
Returns the number of digits a Float object is allowed to have;
the result is system-dependent:
BigDecimal.double_fig # => 16
267 268 269 270 271 |
# File 'ext/bigdecimal/bigdecimal.c', line 267 static VALUE BigDecimal_double_fig(VALUE self) { return INT2FIX(VpDblFig()); } |
.interpret_loosely(str) ⇒ Object
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 |
# File 'ext/bigdecimal/bigdecimal.c', line 3566 static VALUE BigDecimal_s_interpret_loosely(VALUE klass, VALUE str) { char const *c_str = StringValueCStr(str); Real *vp = VpNewRbClass(0, c_str, klass, false, true); if (!vp) return Qnil; else return VpCheckGetValue(vp); } |
.limit(*args) ⇒ Object
BigDecimal.limit(digits)
Limit the number of significant digits in newly created BigDecimal numbers to the specified value. Rounding is performed as necessary, as specified by BigDecimal.mode.
A limit of 0, the default, means no upper limit.
The limit specified by this method takes less priority over any limit specified to instance methods such as ceil, floor, truncate, or round.
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 |
# File 'ext/bigdecimal/bigdecimal.c', line 3589 static VALUE BigDecimal_limit(int argc, VALUE *argv, VALUE self) { VALUE nFig; VALUE nCur = SIZET2NUM(VpGetPrecLimit()); if (rb_scan_args(argc, argv, "01", &nFig) == 1) { int nf; if (NIL_P(nFig)) return nCur; nf = NUM2INT(nFig); if (nf < 0) { rb_raise(rb_eArgError, "argument must be positive"); } VpSetPrecLimit(nf); } return nCur; } |
.mode(mode, setting = nil) ⇒ Integer
Returns an integer representing the mode settings for exception handling and rounding.
These modes control exception handling:
-
BigDecimal::EXCEPTION_NaN.
-
BigDecimal::EXCEPTION_INFINITY.
-
BigDecimal::EXCEPTION_UNDERFLOW.
-
BigDecimal::EXCEPTION_OVERFLOW.
-
BigDecimal::EXCEPTION_ZERODIVIDE.
-
BigDecimal::EXCEPTION_ALL.
Values for setting for exception handling:
-
true: sets the givenmodetotrue. -
false: sets the givenmodetofalse. -
nil: does not modify the mode settings.
You can use method BigDecimal.save_exception_mode to temporarily change, and then automatically restore, exception modes.
For clarity, some examples below begin by setting all exception modes to false.
This mode controls the way rounding is to be performed:
-
BigDecimal::ROUND_MODE
You can use method BigDecimal.save_rounding_mode to temporarily change, and then automatically restore, the rounding mode.
NaNs
Mode BigDecimal::EXCEPTION_NaN controls behavior when a BigDecimal NaN is created.
Settings:
-
false(default): ReturnsBigDecimal('NaN'). -
true: Raises FloatDomainError.
Examples:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
BigDecimal('NaN') # => NaN
BigDecimal.mode(BigDecimal::EXCEPTION_NaN, true) # => 2
BigDecimal('NaN') # Raises FloatDomainError
Infinities
Mode BigDecimal::EXCEPTION_INFINITY controls behavior when a BigDecimal Infinity or -Infinity is created. Settings:
-
false(default): ReturnsBigDecimal('Infinity')orBigDecimal('-Infinity'). -
true: Raises FloatDomainError.
Examples:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
BigDecimal('Infinity') # => Infinity
BigDecimal('-Infinity') # => -Infinity
BigDecimal.mode(BigDecimal::EXCEPTION_INFINITY, true) # => 1
BigDecimal('Infinity') # Raises FloatDomainError
BigDecimal('-Infinity') # Raises FloatDomainError
Underflow
Mode BigDecimal::EXCEPTION_UNDERFLOW controls behavior when a BigDecimal underflow occurs. Settings:
-
false(default): ReturnsBigDecimal('0')orBigDecimal('-Infinity'). -
true: Raises FloatDomainError.
Examples:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
def flow_under
x = BigDecimal('0.1')
100.times { x *= x }
end
flow_under # => 100
BigDecimal.mode(BigDecimal::EXCEPTION_UNDERFLOW, true) # => 4
flow_under # Raises FloatDomainError
Overflow
Mode BigDecimal::EXCEPTION_OVERFLOW controls behavior when a BigDecimal overflow occurs. Settings:
-
false(default): ReturnsBigDecimal('Infinity')orBigDecimal('-Infinity'). -
true: Raises FloatDomainError.
Examples:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
def flow_over
x = BigDecimal('10')
100.times { x *= x }
end
flow_over # => 100
BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, true) # => 1
flow_over # Raises FloatDomainError
Zero Division
Mode BigDecimal::EXCEPTION_ZERODIVIDE controls behavior when a zero-division occurs. Settings:
-
false(default): ReturnsBigDecimal('Infinity')orBigDecimal('-Infinity'). -
true: Raises FloatDomainError.
Examples:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
one = BigDecimal('1')
zero = BigDecimal('0')
one / zero # => Infinity
BigDecimal.mode(BigDecimal::EXCEPTION_ZERODIVIDE, true) # => 16
one / zero # Raises FloatDomainError
All Exceptions
Mode BigDecimal::EXCEPTION_ALL controls all of the above:
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, true) # => 23
Rounding
Mode BigDecimal::ROUND_MODE controls the way rounding is to be performed; its setting values are:
-
ROUND_UP: Round away from zero. Aliased as:up. -
ROUND_DOWN: Round toward zero. Aliased as:downand:truncate. -
ROUND_HALF_UP: Round toward the nearest neighbor; if the neighbors are equidistant, round away from zero. Aliased as:half_upand:default. -
ROUND_HALF_DOWN: Round toward the nearest neighbor; if the neighbors are equidistant, round toward zero. Aliased as:half_down. -
ROUND_HALF_EVEN(Banker’s rounding): Round toward the nearest neighbor; if the neighbors are equidistant, round toward the even neighbor. Aliased as:half_evenand:banker. -
ROUND_CEILING: Round toward positive infinity. Aliased as:ceilingand:ceil. -
ROUND_FLOOR: Round toward negative infinity. Aliased as:floor:.
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 |
# File 'ext/bigdecimal/bigdecimal.c', line 862 static VALUE BigDecimal_mode(int argc, VALUE *argv, VALUE self) { VALUE which; VALUE val; unsigned long f,fo; rb_scan_args(argc, argv, "11", &which, &val); f = (unsigned long)NUM2INT(which); if (f & VP_EXCEPTION_ALL) { /* Exception mode setting */ fo = VpGetException(); if (val == Qnil) return INT2FIX(fo); if (val != Qfalse && val!=Qtrue) { rb_raise(rb_eArgError, "second argument must be true or false"); return Qnil; /* Not reached */ } if (f & VP_EXCEPTION_INFINITY) { VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_INFINITY) : (fo & (~VP_EXCEPTION_INFINITY)))); } fo = VpGetException(); if (f & VP_EXCEPTION_NaN) { VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_NaN) : (fo & (~VP_EXCEPTION_NaN)))); } fo = VpGetException(); if (f & VP_EXCEPTION_UNDERFLOW) { VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_UNDERFLOW) : (fo & (~VP_EXCEPTION_UNDERFLOW)))); } fo = VpGetException(); if(f & VP_EXCEPTION_ZERODIVIDE) { VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_ZERODIVIDE) : (fo & (~VP_EXCEPTION_ZERODIVIDE)))); } fo = VpGetException(); return INT2FIX(fo); } if (VP_ROUND_MODE == f) { /* Rounding mode setting */ unsigned short sw; fo = VpGetRoundMode(); if (NIL_P(val)) return INT2FIX(fo); sw = check_rounding_mode(val); fo = VpSetRoundMode(sw); return INT2FIX(fo); } rb_raise(rb_eTypeError, "first argument for BigDecimal.mode invalid"); return Qnil; } |
.save_exception_mode { ... } ⇒ Object
Execute the provided block, but preserve the exception mode
BigDecimal.save_exception_mode do
BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false)
BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false)
BigDecimal(BigDecimal('Infinity'))
BigDecimal(BigDecimal('-Infinity'))
BigDecimal(BigDecimal('NaN'))
end
For use with the BigDecimal::EXCEPTION_*
See BigDecimal.mode
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 |
# File 'ext/bigdecimal/bigdecimal.c', line 3648 static VALUE BigDecimal_save_exception_mode(VALUE self) { unsigned short const exception_mode = VpGetException(); int state; VALUE ret = rb_protect(rb_yield, Qnil, &state); VpSetException(exception_mode); if (state) rb_jump_tag(state); return ret; } |
.save_limit { ... } ⇒ Object
Execute the provided block, but preserve the precision limit
BigDecimal.limit(100)
puts BigDecimal.limit
BigDecimal.save_limit do
BigDecimal.limit(200)
puts BigDecimal.limit
end
puts BigDecimal.limit
3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 |
# File 'ext/bigdecimal/bigdecimal.c', line 3698 static VALUE BigDecimal_save_limit(VALUE self) { size_t const limit = VpGetPrecLimit(); int state; VALUE ret = rb_protect(rb_yield, Qnil, &state); VpSetPrecLimit(limit); if (state) rb_jump_tag(state); return ret; } |
.save_rounding_mode { ... } ⇒ Object
Execute the provided block, but preserve the rounding mode
BigDecimal.save_rounding_mode do
BigDecimal.mode(BigDecimal::ROUND_MODE, :up)
puts BigDecimal.mode(BigDecimal::ROUND_MODE)
end
For use with the BigDecimal::ROUND_*
See BigDecimal.mode
3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 |
# File 'ext/bigdecimal/bigdecimal.c', line 3673 static VALUE BigDecimal_save_rounding_mode(VALUE self) { unsigned short const round_mode = VpGetRoundMode(); int state; VALUE ret = rb_protect(rb_yield, Qnil, &state); VpSetRoundMode(round_mode); if (state) rb_jump_tag(state); return ret; } |
Instance Method Details
#% ⇒ Object
%: a%b = a - (a.to_f/b).floor * b
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 |
# File 'ext/bigdecimal/bigdecimal.c', line 1858 static VALUE BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */ { ENTER(3); Real *div = NULL, *mod = NULL; if (BigDecimal_DoDivmod(self, r, &div, &mod)) { SAVE(div); SAVE(mod); return VpCheckGetValue(mod); } return DoSomeOne(self, r, '%'); } |
#*(r) ⇒ Object
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 |
# File 'ext/bigdecimal/bigdecimal.c', line 1589 static VALUE BigDecimal_mult(VALUE self, VALUE r) { ENTER(5); Real *c, *a, *b; size_t mx; GUARD_OBJ(a, GetVpValue(self, 1)); if (RB_TYPE_P(r, T_FLOAT)) { b = GetVpValueWithPrec(r, 0, 1); } else if (RB_TYPE_P(r, T_RATIONAL)) { b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1); } else { b = GetVpValue(r,0); } if (!b) return DoSomeOne(self, r, '*'); SAVE(b); mx = a->Prec + b->Prec; GUARD_OBJ(c, VpCreateRbObject(mx *(VpBaseFig() + 1), "0", true)); VpMult(c, a, b); return VpCheckGetValue(c); } |
#**(other) ⇒ Object
Returns the BigDecimal value of self raised to power other:
b = BigDecimal('3.14')
b ** 2 # => 0.98596e1
b ** 2.0 # => 0.98596e1
b ** Rational(2, 1) # => 0.98596e1
Related: BigDecimal#power.
3046 3047 3048 3049 3050 |
# File 'ext/bigdecimal/bigdecimal.c', line 3046 static VALUE BigDecimal_power_op(VALUE self, VALUE exp) { return BigDecimal_power(1, &exp, self); } |
#+(value) ⇒ Object
Returns the BigDecimal sum of self and value:
b = BigDecimal('111111.111') # => 0.111111111e6
b + 2 # => 0.111113111e6
b + 2.0 # => 0.111113111e6
b + Rational(2, 1) # => 0.111113111e6
b + Complex(2, 0) # => (0.111113111e6+0i)
See the Note About Precision.
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 |
# File 'ext/bigdecimal/bigdecimal.c', line 1253 static VALUE BigDecimal_add(VALUE self, VALUE r) { ENTER(5); Real *c, *a, *b; size_t mx; GUARD_OBJ(a, GetVpValue(self, 1)); if (RB_TYPE_P(r, T_FLOAT)) { b = GetVpValueWithPrec(r, 0, 1); } else if (RB_TYPE_P(r, T_RATIONAL)) { b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1); } else { b = GetVpValue(r, 0); } if (!b) return DoSomeOne(self,r,'+'); SAVE(b); if (VpIsNaN(b)) return b->obj; if (VpIsNaN(a)) return a->obj; mx = GetAddSubPrec(a, b); if (mx == (size_t)-1L) { GUARD_OBJ(c, VpCreateRbObject(VpBaseFig() + 1, "0", true)); VpAddSub(c, a, b, 1); } else { GUARD_OBJ(c, VpCreateRbObject(mx * (VpBaseFig() + 1), "0", true)); if(!mx) { VpSetInf(c, VpGetSign(a)); } else { VpAddSub(c, a, b, 1); } } return VpCheckGetValue(c); } |
#+ ⇒ self
Returns self:
+BigDecimal(5) # => 0.5e1
+BigDecimal(-5) # => -0.5e1
1231 1232 1233 1234 1235 |
# File 'ext/bigdecimal/bigdecimal.c', line 1231 static VALUE BigDecimal_uplus(VALUE self) { return self; } |
#-(value) ⇒ Object
Returns the BigDecimal difference of self and value:
b = BigDecimal('333333.333') # => 0.333333333e6
b - 2 # => 0.333331333e6
b - 2.0 # => 0.333331333e6
b - Rational(2, 1) # => 0.333331333e6
b - Complex(2, 0) # => (0.333331333e6+0i)
See the Note About Precision.
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 |
# File 'ext/bigdecimal/bigdecimal.c', line 1308 static VALUE BigDecimal_sub(VALUE self, VALUE r) { ENTER(5); Real *c, *a, *b; size_t mx; GUARD_OBJ(a, GetVpValue(self,1)); if (RB_TYPE_P(r, T_FLOAT)) { b = GetVpValueWithPrec(r, 0, 1); } else if (RB_TYPE_P(r, T_RATIONAL)) { b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1); } else { b = GetVpValue(r,0); } if (!b) return DoSomeOne(self,r,'-'); SAVE(b); if (VpIsNaN(b)) return b->obj; if (VpIsNaN(a)) return a->obj; mx = GetAddSubPrec(a,b); if (mx == (size_t)-1L) { GUARD_OBJ(c, VpCreateRbObject(VpBaseFig() + 1, "0", true)); VpAddSub(c, a, b, -1); } else { GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0", true)); if (!mx) { VpSetInf(c,VpGetSign(a)); } else { VpAddSub(c, a, b, -1); } } return VpCheckGetValue(c); } |
#- ⇒ Object
Returns the BigDecimal negation of self:
b0 = BigDecimal('1.5')
b1 = -b0 # => -0.15e1
b2 = -b1 # => 0.15e1
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 |
# File 'ext/bigdecimal/bigdecimal.c', line 1578 static VALUE BigDecimal_neg(VALUE self) { ENTER(5); Real *c, *a; GUARD_OBJ(a, GetVpValue(self, 1)); GUARD_OBJ(c, VpCreateRbObject(a->Prec *(VpBaseFig() + 1), "0", true)); VpAsgn(c, a, -1); return VpCheckGetValue(c); } |
#/ ⇒ Object
For c = self/r: with round operation
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 |
# File 'ext/bigdecimal/bigdecimal.c', line 1680 static VALUE BigDecimal_div(VALUE self, VALUE r) /* For c = self/r: with round operation */ { ENTER(5); Real *c=NULL, *res=NULL, *div = NULL; r = BigDecimal_divide(self, r, &c, &res, &div); if (!NIL_P(r)) return r; /* coerced by other */ SAVE(c); SAVE(res); SAVE(div); /* a/b = c + r/b */ /* c xxxxx r 00000yyyyy ==> (y/b)*BASE >= HALF_BASE */ /* Round */ if (VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */ VpInternalRound(c, 0, c->frac[c->Prec-1], (DECDIG)(VpBaseVal() * (DECDIG_DBL)res->frac[0] / div->frac[0])); } return VpCheckGetValue(c); } |
#<(other) ⇒ Boolean
Returns true if self is less than other, false otherwise:
b = BigDecimal('1.5') # => 0.15e1
b < 2 # => true
b < 2.0 # => true
b < Rational(2, 1) # => true
b < 1.5 # => false
Raises an exception if the comparison cannot be made.
1498 1499 1500 1501 1502 |
# File 'ext/bigdecimal/bigdecimal.c', line 1498 static VALUE BigDecimal_lt(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '<'); } |
#<=(other) ⇒ Boolean
Returns true if self is less or equal to than other, false otherwise:
b = BigDecimal('1.5') # => 0.15e1
b <= 2 # => true
b <= 2.0 # => true
b <= Rational(2, 1) # => true
b <= 1.5 # => true
b < 1 # => false
Raises an exception if the comparison cannot be made.
1519 1520 1521 1522 1523 |
# File 'ext/bigdecimal/bigdecimal.c', line 1519 static VALUE BigDecimal_le(VALUE self, VALUE r) { return BigDecimalCmp(self, r, 'L'); } |
#<=>(r) ⇒ Object
The comparison operator. a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.
1462 1463 1464 1465 1466 |
# File 'ext/bigdecimal/bigdecimal.c', line 1462 static VALUE BigDecimal_comp(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '*'); } |
#==(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal('1.0') == 1.0 #=> true
1478 1479 1480 1481 1482 |
# File 'ext/bigdecimal/bigdecimal.c', line 1478 static VALUE BigDecimal_eq(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '='); } |
#===(r) ⇒ Object
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal('1.0') == 1.0 #=> true
1478 1479 1480 1481 1482 |
# File 'ext/bigdecimal/bigdecimal.c', line 1478 static VALUE BigDecimal_eq(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '='); } |
#>(other) ⇒ Boolean
Returns true if self is greater than other, false otherwise:
b = BigDecimal('1.5')
b > 1 # => true
b > 1.0 # => true
b > Rational(1, 1) # => true
b > 2 # => false
Raises an exception if the comparison cannot be made.
1539 1540 1541 1542 1543 |
# File 'ext/bigdecimal/bigdecimal.c', line 1539 static VALUE BigDecimal_gt(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '>'); } |
#>=(other) ⇒ Boolean
Returns true if self is greater than or equal to other, false otherwise:
b = BigDecimal('1.5')
b >= 1 # => true
b >= 1.0 # => true
b >= Rational(1, 1) # => true
b >= 1.5 # => true
b > 2 # => false
Raises an exception if the comparison cannot be made.
1560 1561 1562 1563 1564 |
# File 'ext/bigdecimal/bigdecimal.c', line 1560 static VALUE BigDecimal_ge(VALUE self, VALUE r) { return BigDecimalCmp(self, r, 'G'); } |
#_dump ⇒ String
Returns a string representing the marshalling of self. See module Marshal.
inf = BigDecimal('Infinity') # => Infinity
dumped = inf._dump # => "9:Infinity"
BigDecimal._load(dumped) # => Infinity
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
# File 'ext/bigdecimal/bigdecimal.c', line 568 static VALUE BigDecimal_dump(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *vp; char *psz; VALUE dummy; volatile VALUE dump; rb_scan_args(argc, argv, "01", &dummy); GUARD_OBJ(vp,GetVpValue(self, 1)); dump = rb_str_new(0, VpNumOfChars(vp, "E")+50); psz = RSTRING_PTR(dump); sprintf(psz, "%"PRIuSIZE":", VpMaxPrec(vp)*VpBaseFig()); VpToString(vp, psz+strlen(psz), 0, 0); rb_str_resize(dump, strlen(psz)); return dump; } |
#abs ⇒ Object
Returns the BigDecimal absolute value of self:
BigDecimal('5').abs # => 0.5e1
BigDecimal('-3').abs # => 0.3e1
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 |
# File 'ext/bigdecimal/bigdecimal.c', line 2190 static VALUE BigDecimal_abs(VALUE self) { ENTER(5); Real *c, *a; size_t mx; GUARD_OBJ(a, GetVpValue(self, 1)); mx = a->Prec *(VpBaseFig() + 1); GUARD_OBJ(c, VpCreateRbObject(mx, "0", true)); VpAsgn(c, a, 1); VpChangeSign(c, 1); return VpCheckGetValue(c); } |
#add(value, ndigits) ⇒ Object
Returns the BigDecimal sum of self and value with a precision of ndigits decimal digits.
When ndigits is less than the number of significant digits in the sum, the sum is rounded to that number of digits, according to the current rounding mode; see BigDecimal.mode.
Examples:
# Set the rounding mode.
BigDecimal.mode(BigDecimal::ROUND_MODE, :half_up)
b = BigDecimal('111111.111')
b.add(1, 0) # => 0.111112111e6
b.add(1, 3) # => 0.111e6
b.add(1, 6) # => 0.111112e6
b.add(1, 15) # => 0.111112111e6
b.add(1.0, 15) # => 0.111112111e6
b.add(Rational(1, 1), 15) # => 0.111112111e6
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 |
# File 'ext/bigdecimal/bigdecimal.c', line 2089 static VALUE BigDecimal_add2(VALUE self, VALUE b, VALUE n) { ENTER(2); Real *cv; SIGNED_VALUE mx = GetPrecisionInt(n); if (mx == 0) return BigDecimal_add(self, b); else { size_t pl = VpSetPrecLimit(0); VALUE c = BigDecimal_add(self, b); VpSetPrecLimit(pl); GUARD_OBJ(cv, GetVpValue(c, 1)); VpLeftRound(cv, VpGetRoundMode(), mx); return VpCheckGetValue(cv); } } |
#ceil(*args) ⇒ Object
ceil(n)
Return the smallest integer greater than or equal to the value, as a BigDecimal.
BigDecimal(‘3.14159’).ceil #=> 4 BigDecimal(‘-9.1’).ceil #=> -9
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).ceil(3) #=> 3.142 BigDecimal(‘13345.234’).ceil(-2) #=> 13400.0
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 |
# File 'ext/bigdecimal/bigdecimal.c', line 2448 static VALUE BigDecimal_ceil(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *c, *a; int iLoc; VALUE vLoc; size_t mx, pl = VpSetPrecLimit(0); if (rb_scan_args(argc, argv, "01", &vLoc) == 0) { iLoc = 0; } else { iLoc = NUM2INT(vLoc); } GUARD_OBJ(a, GetVpValue(self, 1)); mx = a->Prec * (VpBaseFig() + 1); GUARD_OBJ(c, VpCreateRbObject(mx, "0", true)); VpSetPrecLimit(pl); VpActiveRound(c, a, VP_ROUND_CEIL, iLoc); if (argc == 0) { return BigDecimal_to_i(VpCheckGetValue(c)); } return VpCheckGetValue(c); } |
#clone ⇒ Object
3068 3069 3070 3071 3072 |
# File 'ext/bigdecimal/bigdecimal.c', line 3068 static VALUE BigDecimal_clone(VALUE self) { return self; } |
#coerce(other) ⇒ Object
The coerce method provides support for Ruby type coercion. It is not enabled by default.
This means that binary operations like + * / or - can often be performed on a BigDecimal and an object of another type, if the other object can be coerced into a BigDecimal value.
e.g.
a = BigDecimal("1.0")
b = a / 2.0 #=> 0.5
Note that coercing a String to a BigDecimal is not supported by default; it requires a special compile-time option when building Ruby.
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 |
# File 'ext/bigdecimal/bigdecimal.c', line 1195 static VALUE BigDecimal_coerce(VALUE self, VALUE other) { ENTER(2); VALUE obj; Real *b; if (RB_TYPE_P(other, T_FLOAT)) { GUARD_OBJ(b, GetVpValueWithPrec(other, 0, 1)); obj = rb_assoc_new(VpCheckGetValue(b), self); } else { if (RB_TYPE_P(other, T_RATIONAL)) { Real* pv = DATA_PTR(self); GUARD_OBJ(b, GetVpValueWithPrec(other, pv->Prec*VpBaseFig(), 1)); } else { GUARD_OBJ(b, GetVpValue(other, 1)); } obj = rb_assoc_new(b->obj, self); } return obj; } |
#div(*args) ⇒ Object
call-seq:
div(value) -> integer
div(value, digits) -> bigdecimal or integer
Divide by the specified value.
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
If digits is 0, the result is the same as for the / operator or #quo.
If digits is not specified, the result is an integer, by analogy with Float#div; see also BigDecimal#divmod.
See BigDecimal#/. See BigDecimal#quo.
Examples:
a = BigDecimal("4")
b = BigDecimal("3")
a.div(b, 3) # => 0.133e1
a.div(b, 0) # => 0.1333333333333333333e1
a / b # => 0.1333333333333333333e1
a.quo(b) # => 0.1333333333333333333e1
a.div(b) # => 1
2054 2055 2056 2057 2058 2059 2060 2061 2062 |
# File 'ext/bigdecimal/bigdecimal.c', line 2054 static VALUE BigDecimal_div3(int argc, VALUE *argv, VALUE self) { VALUE b,n; rb_scan_args(argc, argv, "11", &b, &n); return BigDecimal_div2(self, b, n); } |
#divmod(r) ⇒ Object
divmod(value)
Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers. The quotient is rounded towards negative infinity.
For example:
require 'bigdecimal'
a = BigDecimal("42")
b = BigDecimal("9")
q, m = a.divmod(b)
c = q * b + m
a == c #=> true
The quotient q is (a/b).floor, and the modulus is the amount that must be added to q * b to get a.
1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 |
# File 'ext/bigdecimal/bigdecimal.c', line 1956 static VALUE BigDecimal_divmod(VALUE self, VALUE r) { ENTER(5); Real *div = NULL, *mod = NULL; if (BigDecimal_DoDivmod(self, r, &div, &mod)) { SAVE(div); SAVE(mod); return rb_assoc_new(VpCheckGetValue(div), VpCheckGetValue(mod)); } return DoSomeOne(self,r,rb_intern("divmod")); } |
#dup ⇒ Object
3068 3069 3070 3071 3072 |
# File 'ext/bigdecimal/bigdecimal.c', line 3068 static VALUE BigDecimal_clone(VALUE self) { return self; } |
#eql?(r) ⇒ Boolean
Tests for value equality; returns true if the values are equal.
The == and === operators and the eql? method have the same implementation for BigDecimal.
Values may be coerced to perform the comparison:
BigDecimal('1.0') == 1.0 #=> true
1478 1479 1480 1481 1482 |
# File 'ext/bigdecimal/bigdecimal.c', line 1478 static VALUE BigDecimal_eq(VALUE self, VALUE r) { return BigDecimalCmp(self, r, '='); } |
#exponent ⇒ Object
Returns the exponent of the BigDecimal number, as an Integer.
If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of digits with no leading zeros, then n is the exponent.
2639 2640 2641 2642 2643 2644 |
# File 'ext/bigdecimal/bigdecimal.c', line 2639 static VALUE BigDecimal_exponent(VALUE self) { ssize_t e = VpExponent10(GetVpValue(self, 1)); return SSIZET2NUM(e); } |
#finite? ⇒ Boolean
Returns True if the value is finite (not NaN or infinite).
1034 1035 1036 1037 1038 1039 1040 1041 |
# File 'ext/bigdecimal/bigdecimal.c', line 1034 static VALUE BigDecimal_IsFinite(VALUE self) { Real *p = GetVpValue(self, 1); if (VpIsNaN(p)) return Qfalse; if (VpIsInf(p)) return Qfalse; return Qtrue; } |
#fix ⇒ Object
Return the integer part of the number, as a BigDecimal.
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 |
# File 'ext/bigdecimal/bigdecimal.c', line 2231 static VALUE BigDecimal_fix(VALUE self) { ENTER(5); Real *c, *a; size_t mx; GUARD_OBJ(a, GetVpValue(self, 1)); mx = a->Prec *(VpBaseFig() + 1); GUARD_OBJ(c, VpCreateRbObject(mx, "0", true)); VpActiveRound(c, a, VP_ROUND_DOWN, 0); /* 0: round off */ return VpCheckGetValue(c); } |
#floor(*args) ⇒ Object
floor(n)
Return the largest integer less than or equal to the value, as a BigDecimal.
BigDecimal(‘3.14159’).floor #=> 3 BigDecimal(‘-9.1’).floor #=> -10
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).floor(3) #=> 3.141 BigDecimal(‘13345.234’).floor(-2) #=> 13300.0
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 |
# File 'ext/bigdecimal/bigdecimal.c', line 2401 static VALUE BigDecimal_floor(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *c, *a; int iLoc; VALUE vLoc; size_t mx, pl = VpSetPrecLimit(0); if (rb_scan_args(argc, argv, "01", &vLoc)==0) { iLoc = 0; } else { iLoc = NUM2INT(vLoc); } GUARD_OBJ(a, GetVpValue(self, 1)); mx = a->Prec * (VpBaseFig() + 1); GUARD_OBJ(c, VpCreateRbObject(mx, "0", true)); VpSetPrecLimit(pl); VpActiveRound(c, a, VP_ROUND_FLOOR, iLoc); #ifdef BIGDECIMAL_DEBUG VPrint(stderr, "floor: c=%\n", c); #endif if (argc == 0) { return BigDecimal_to_i(VpCheckGetValue(c)); } return VpCheckGetValue(c); } |
#frac ⇒ Object
Return the fractional part of the number, as a BigDecimal.
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 |
# File 'ext/bigdecimal/bigdecimal.c', line 2370 static VALUE BigDecimal_frac(VALUE self) { ENTER(5); Real *c, *a; size_t mx; GUARD_OBJ(a, GetVpValue(self, 1)); mx = a->Prec * (VpBaseFig() + 1); GUARD_OBJ(c, VpCreateRbObject(mx, "0", true)); VpFrac(c, a); return VpCheckGetValue(c); } |
#hash ⇒ Integer
Returns the integer hash value for self.
Two instances of BigDecimal have the same hash value if and only if they have equal:
-
Sign.
-
Fractional part.
-
Exponent.
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
# File 'ext/bigdecimal/bigdecimal.c', line 539 static VALUE BigDecimal_hash(VALUE self) { ENTER(1); Real *p; st_index_t hash; GUARD_OBJ(p, GetVpValue(self, 1)); hash = (st_index_t)p->sign; /* hash!=2: the case for 0(1),NaN(0) or +-Infinity(3) is sign itself */ if(hash == 2 || hash == (st_index_t)-2) { hash ^= rb_memhash(p->frac, sizeof(DECDIG)*p->Prec); hash += p->exponent; } return ST2FIX(hash); } |
#infinite? ⇒ Boolean
Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity.
1024 1025 1026 1027 1028 1029 1030 1031 |
# File 'ext/bigdecimal/bigdecimal.c', line 1024 static VALUE BigDecimal_IsInfinite(VALUE self) { Real *p = GetVpValue(self, 1); if (VpIsPosInf(p)) return INT2FIX(1); if (VpIsNegInf(p)) return INT2FIX(-1); return Qnil; } |
#inspect ⇒ Object
Returns a string representation of self.
BigDecimal("1234.5678").inspect
#=> "0.12345678e4"
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 |
# File 'ext/bigdecimal/bigdecimal.c', line 2651 static VALUE BigDecimal_inspect(VALUE self) { ENTER(5); Real *vp; volatile VALUE str; size_t nc; GUARD_OBJ(vp, GetVpValue(self, 1)); nc = VpNumOfChars(vp, "E"); str = rb_str_new(0, nc); VpToString(vp, RSTRING_PTR(str), 0, 0); rb_str_resize(str, strlen(RSTRING_PTR(str))); return str; } |
#modulo ⇒ Object
%: a%b = a - (a.to_f/b).floor * b
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 |
# File 'ext/bigdecimal/bigdecimal.c', line 1858 static VALUE BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */ { ENTER(3); Real *div = NULL, *mod = NULL; if (BigDecimal_DoDivmod(self, r, &div, &mod)) { SAVE(div); SAVE(mod); return VpCheckGetValue(mod); } return DoSomeOne(self, r, '%'); } |
#mult(other, ndigits) ⇒ Object
Returns the BigDecimal product of self and value with a precision of ndigits decimal digits.
When ndigits is less than the number of significant digits in the sum, the sum is rounded to that number of digits, according to the current rounding mode; see BigDecimal.mode.
Examples:
# Set the rounding mode.
BigDecimal.mode(BigDecimal::ROUND_MODE, :half_up)
b = BigDecimal('555555.555')
b.mult(3, 0) # => 0.1666666665e7
b.mult(3, 3) # => 0.167e7
b.mult(3, 6) # => 0.166667e7
b.mult(3, 15) # => 0.1666666665e7
b.mult(3.0, 0) # => 0.1666666665e7
b.mult(Rational(3, 1), 0) # => 0.1666666665e7
b.mult(Complex(3, 0), 0) # => (0.1666666665e7+0.0i)
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 |
# File 'ext/bigdecimal/bigdecimal.c', line 2162 static VALUE BigDecimal_mult2(VALUE self, VALUE b, VALUE n) { ENTER(2); Real *cv; SIGNED_VALUE mx = GetPrecisionInt(n); if (mx == 0) return BigDecimal_mult(self, b); else { size_t pl = VpSetPrecLimit(0); VALUE c = BigDecimal_mult(self, b); VpSetPrecLimit(pl); GUARD_OBJ(cv, GetVpValue(c, 1)); VpLeftRound(cv, VpGetRoundMode(), mx); return VpCheckGetValue(cv); } } |
#n_significant_digits ⇒ Integer
Returns the number of decimal significant digits in self.
BigDecimal("0").scale # => 0
BigDecimal("1").scale # => 1
BigDecimal("1.1").scale # => 2
BigDecimal("3.1415").scale # => 5
BigDecimal("-1e20").precision # => 1
BigDecimal("1e-20").precision # => 1
BigDecimal("Infinity").scale # => 0
BigDecimal("-Infinity").scale # => 0
BigDecimal("NaN").scale # => 0
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 |
# File 'ext/bigdecimal/bigdecimal.c', line 499 static VALUE BigDecimal_n_significant_digits(VALUE self) { ENTER(1); Real *p; GUARD_OBJ(p, GetVpValue(self, 1)); if (VpIsZero(p) || !VpIsDef(p)) { return INT2FIX(0); } ssize_t n = p->Prec; /* The length of frac without trailing zeros. */ for (n = p->Prec; n > 0 && p->frac[n-1] == 0; --n); if (n == 0) return INT2FIX(0); DECDIG x; int nlz = BASE_FIG; for (x = p->frac[0]; x > 0; x /= 10) --nlz; int ntz = 0; for (x = p->frac[n-1]; x > 0 && x % 10 == 0; x /= 10) ++ntz; ssize_t n_significant_digits = BASE_FIG*n - nlz - ntz; return SSIZET2NUM(n_significant_digits); } |
#nan? ⇒ Boolean
Returns True if the value is Not a Number.
1013 1014 1015 1016 1017 1018 1019 |
# File 'ext/bigdecimal/bigdecimal.c', line 1013 static VALUE BigDecimal_IsNaN(VALUE self) { Real *p = GetVpValue(self, 1); if (VpIsNaN(p)) return Qtrue; return Qfalse; } |
#nonzero? ⇒ Boolean
Returns self if the value is non-zero, nil otherwise.
1452 1453 1454 1455 1456 1457 |
# File 'ext/bigdecimal/bigdecimal.c', line 1452 static VALUE BigDecimal_nonzero(VALUE self) { Real *a = GetVpValue(self, 1); return VpIsZero(a) ? Qnil : self; } |
#power(*args) ⇒ Object
power(n) power(n, prec)
Returns the value raised to the power of n.
Note that n must be an Integer.
Also available as the operator **.
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 |
# File 'ext/bigdecimal/bigdecimal.c', line 2794 static VALUE BigDecimal_power(int argc, VALUE*argv, VALUE self) { ENTER(5); VALUE vexp, prec; Real* exp = NULL; Real *x, *y; ssize_t mp, ma, n; SIGNED_VALUE int_exp; double d; rb_scan_args(argc, argv, "11", &vexp, &prec); GUARD_OBJ(x, GetVpValue(self, 1)); n = NIL_P(prec) ? (ssize_t)(x->Prec*VpBaseFig()) : NUM2SSIZET(prec); if (VpIsNaN(x)) { y = VpCreateRbObject(n, "0", true); RB_GC_GUARD(y->obj); VpSetNaN(y); return VpCheckGetValue(y); } retry: switch (TYPE(vexp)) { case T_FIXNUM: break; case T_BIGNUM: break; case T_FLOAT: d = RFLOAT_VALUE(vexp); if (d == round(d)) { if (FIXABLE(d)) { vexp = LONG2FIX((long)d); } else { vexp = rb_dbl2big(d); } goto retry; } if (NIL_P(prec)) { n += BIGDECIMAL_DOUBLE_FIGURES; } exp = GetVpValueWithPrec(vexp, 0, 1); break; case T_RATIONAL: if (is_zero(rb_rational_num(vexp))) { if (is_positive(vexp)) { vexp = INT2FIX(0); goto retry; } } else if (is_one(rb_rational_den(vexp))) { vexp = rb_rational_num(vexp); goto retry; } exp = GetVpValueWithPrec(vexp, n, 1); if (NIL_P(prec)) { n += n; } break; case T_DATA: if (is_kind_of_BigDecimal(vexp)) { VALUE zero = INT2FIX(0); VALUE rounded = BigDecimal_round(1, &zero, vexp); if (RTEST(BigDecimal_eq(vexp, rounded))) { vexp = BigDecimal_to_i(vexp); goto retry; } if (NIL_P(prec)) { GUARD_OBJ(y, GetVpValue(vexp, 1)); n += y->Prec*VpBaseFig(); } exp = DATA_PTR(vexp); break; } /* fall through */ default: rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (expected scalar Numeric)", RB_OBJ_CLASSNAME(vexp)); } if (VpIsZero(x)) { if (is_negative(vexp)) { y = VpCreateRbObject(n, "#0", true); RB_GC_GUARD(y->obj); if (BIGDECIMAL_NEGATIVE_P(x)) { if (is_integer(vexp)) { if (is_even(vexp)) { /* (-0) ** (-even_integer) -> Infinity */ VpSetPosInf(y); } else { /* (-0) ** (-odd_integer) -> -Infinity */ VpSetNegInf(y); } } else { /* (-0) ** (-non_integer) -> Infinity */ VpSetPosInf(y); } } else { /* (+0) ** (-num) -> Infinity */ VpSetPosInf(y); } return VpCheckGetValue(y); } else if (is_zero(vexp)) { return VpCheckGetValue(VpCreateRbObject(n, "1", true)); } else { return VpCheckGetValue(VpCreateRbObject(n, "0", true)); } } if (is_zero(vexp)) { return VpCheckGetValue(VpCreateRbObject(n, "1", true)); } else if (is_one(vexp)) { return self; } if (VpIsInf(x)) { if (is_negative(vexp)) { if (BIGDECIMAL_NEGATIVE_P(x)) { if (is_integer(vexp)) { if (is_even(vexp)) { /* (-Infinity) ** (-even_integer) -> +0 */ return VpCheckGetValue(VpCreateRbObject(n, "0", true)); } else { /* (-Infinity) ** (-odd_integer) -> -0 */ return VpCheckGetValue(VpCreateRbObject(n, "-0", true)); } } else { /* (-Infinity) ** (-non_integer) -> -0 */ return VpCheckGetValue(VpCreateRbObject(n, "-0", true)); } } else { return VpCheckGetValue(VpCreateRbObject(n, "0", true)); } } else { y = VpCreateRbObject(n, "0", true); if (BIGDECIMAL_NEGATIVE_P(x)) { if (is_integer(vexp)) { if (is_even(vexp)) { VpSetPosInf(y); } else { VpSetNegInf(y); } } else { /* TODO: support complex */ rb_raise(rb_eMathDomainError, "a non-integral exponent for a negative base"); } } else { VpSetPosInf(y); } return VpCheckGetValue(y); } } if (exp != NULL) { return bigdecimal_power_by_bigdecimal(x, exp, n); } else if (RB_TYPE_P(vexp, T_BIGNUM)) { VALUE abs_value = BigDecimal_abs(self); if (is_one(abs_value)) { return VpCheckGetValue(VpCreateRbObject(n, "1", true)); } else if (RTEST(rb_funcall(abs_value, '<', 1, INT2FIX(1)))) { if (is_negative(vexp)) { y = VpCreateRbObject(n, "0", true); if (is_even(vexp)) { VpSetInf(y, VpGetSign(x)); } else { VpSetInf(y, -VpGetSign(x)); } return VpCheckGetValue(y); } else if (BIGDECIMAL_NEGATIVE_P(x) && is_even(vexp)) { return VpCheckGetValue(VpCreateRbObject(n, "-0", true)); } else { return VpCheckGetValue(VpCreateRbObject(n, "0", true)); } } else { if (is_positive(vexp)) { y = VpCreateRbObject(n, "0", true); if (is_even(vexp)) { VpSetInf(y, VpGetSign(x)); } else { VpSetInf(y, -VpGetSign(x)); } return VpCheckGetValue(y); } else if (BIGDECIMAL_NEGATIVE_P(x) && is_even(vexp)) { return VpCheckGetValue(VpCreateRbObject(n, "-0", true)); } else { return VpCheckGetValue(VpCreateRbObject(n, "0", true)); } } } int_exp = FIX2LONG(vexp); ma = int_exp; if (ma < 0) ma = -ma; if (ma == 0) ma = 1; if (VpIsDef(x)) { mp = x->Prec * (VpBaseFig() + 1); GUARD_OBJ(y, VpCreateRbObject(mp * (ma + 1), "0", true)); } else { GUARD_OBJ(y, VpCreateRbObject(1, "0", true)); } VpPowerByInt(y, x, int_exp); if (!NIL_P(prec) && VpIsDef(y)) { VpMidRound(y, VpGetRoundMode(), n); } return VpCheckGetValue(y); } |
#precision ⇒ Integer
Returns the number of decimal digits in self:
BigDecimal("0").precision # => 0
BigDecimal("1").precision # => 1
BigDecimal("1.1").precision # => 2
BigDecimal("3.1415").precision # => 5
BigDecimal("-1e20").precision # => 21
BigDecimal("1e-20").precision # => 20
BigDecimal("Infinity").precision # => 0
BigDecimal("-Infinity").precision # => 0
BigDecimal("NaN").precision # => 0
433 434 435 436 437 438 439 |
# File 'ext/bigdecimal/bigdecimal.c', line 433 static VALUE BigDecimal_precision(VALUE self) { ssize_t precision; BigDecimal_count_precision_and_scale(self, &precision, NULL); return SSIZET2NUM(precision); } |
#precision_scale ⇒ Array
Returns a 2-length array; the first item is the result of BigDecimal#precision and the second one is of BigDecimal#scale.
See BigDecimal#precision. See BigDecimal#scale.
475 476 477 478 479 480 481 |
# File 'ext/bigdecimal/bigdecimal.c', line 475 static VALUE BigDecimal_precision_scale(VALUE self) { ssize_t precision, scale; BigDecimal_count_precision_and_scale(self, &precision, &scale); return rb_assoc_new(SSIZET2NUM(precision), SSIZET2NUM(scale)); } |
#precs ⇒ Array
Returns an Array of two Integer values that represent platform-dependent internal storage properties.
This method is deprecated and will be removed in the future. Instead, use BigDecimal#n_significant_digits for obtaining the number of significant digits in scientific notation, and BigDecimal#precision for obtaining the number of digits in decimal notation.
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
# File 'ext/bigdecimal/bigdecimal.c', line 286 static VALUE BigDecimal_prec(VALUE self) { ENTER(1); Real *p; VALUE obj; rb_category_warn(RB_WARN_CATEGORY_DEPRECATED, "BigDecimal#precs is deprecated and will be removed in the future; " "use BigDecimal#precision instead."); GUARD_OBJ(p, GetVpValue(self, 1)); obj = rb_assoc_new(SIZET2NUM(p->Prec*VpBaseFig()), SIZET2NUM(p->MaxPrec*VpBaseFig())); return obj; } |
#quo(value) ⇒ Object #quo(value, digits) ⇒ Object
Divide by the specified value.
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to the given number of digits, according to the rounding mode indicated by BigDecimal.mode.
If digits is 0 or omitted, the result is the same as for the / operator.
See BigDecimal#/. See BigDecimal#div.
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 |
# File 'ext/bigdecimal/bigdecimal.c', line 1718 static VALUE BigDecimal_quo(int argc, VALUE *argv, VALUE self) { VALUE value, digits, result; SIGNED_VALUE n = -1; argc = rb_scan_args(argc, argv, "11", &value, &digits); if (argc > 1) { n = GetPrecisionInt(digits); } if (n > 0) { result = BigDecimal_div2(self, value, digits); } else { result = BigDecimal_div(self, value); } return result; } |
#remainder ⇒ Object
remainder
1924 1925 1926 1927 1928 1929 1930 1931 1932 |
# File 'ext/bigdecimal/bigdecimal.c', line 1924 static VALUE BigDecimal_remainder(VALUE self, VALUE r) /* remainder */ { VALUE f; Real *d, *rv = 0; f = BigDecimal_divremain(self, r, &d, &rv); if (!NIL_P(f)) return f; return VpCheckGetValue(rv); } |
#round(*args) ⇒ Object
round(n, mode)
Round to the nearest integer (by default), returning the result as a BigDecimal if n is specified, or as an Integer if it isn’t.
BigDecimal(‘3.14159’).round #=> 3 BigDecimal(‘8.7’).round #=> 9 BigDecimal(‘-9.9’).round #=> -10
BigDecimal(‘3.14159’).round(2).class.name #=> “BigDecimal” BigDecimal(‘3.14159’).round.class.name #=> “Integer”
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result, and return value will be an Integer.
BigDecimal(‘3.14159’).round(3) #=> 3.142 BigDecimal(‘13345.234’).round(-2) #=> 13300
The value of the optional mode argument can be used to determine how rounding is performed; see BigDecimal.mode.
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 |
# File 'ext/bigdecimal/bigdecimal.c', line 2270 static VALUE BigDecimal_round(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *c, *a; int iLoc = 0; VALUE vLoc; VALUE vRound; int round_to_int = 0; size_t mx, pl; unsigned short sw = VpGetRoundMode(); switch (rb_scan_args(argc, argv, "02", &vLoc, &vRound)) { case 0: iLoc = 0; round_to_int = 1; break; case 1: if (RB_TYPE_P(vLoc, T_HASH)) { sw = check_rounding_mode_option(vLoc); } else { iLoc = NUM2INT(vLoc); if (iLoc < 1) round_to_int = 1; } break; case 2: iLoc = NUM2INT(vLoc); if (RB_TYPE_P(vRound, T_HASH)) { sw = check_rounding_mode_option(vRound); } else { sw = check_rounding_mode(vRound); } break; default: break; } pl = VpSetPrecLimit(0); GUARD_OBJ(a, GetVpValue(self, 1)); mx = a->Prec * (VpBaseFig() + 1); GUARD_OBJ(c, VpCreateRbObject(mx, "0", true)); VpSetPrecLimit(pl); VpActiveRound(c, a, sw, iLoc); if (round_to_int) { return BigDecimal_to_i(VpCheckGetValue(c)); } return VpCheckGetValue(c); } |
#scale ⇒ Integer
Returns the number of decimal digits following the decimal digits in self.
BigDecimal("0").scale # => 0
BigDecimal("1").scale # => 1
BigDecimal("1.1").scale # => 1
BigDecimal("3.1415").scale # => 4
BigDecimal("-1e20").precision # => 0
BigDecimal("1e-20").precision # => 20
BigDecimal("Infinity").scale # => 0
BigDecimal("-Infinity").scale # => 0
BigDecimal("NaN").scale # => 0
457 458 459 460 461 462 463 |
# File 'ext/bigdecimal/bigdecimal.c', line 457 static VALUE BigDecimal_scale(VALUE self) { ssize_t scale; BigDecimal_count_precision_and_scale(self, NULL, &scale); return SSIZET2NUM(scale); } |
#sign ⇒ Object
Returns the sign of the value.
Returns a positive value if > 0, a negative value if < 0, and a zero if == 0.
The specific value returned indicates the type and sign of the BigDecimal, as follows:
- BigDecimal::SIGN_NaN
-
value is Not a Number
- BigDecimal::SIGN_POSITIVE_ZERO
-
value is +0
- BigDecimal::SIGN_NEGATIVE_ZERO
-
value is -0
- BigDecimal::SIGN_POSITIVE_INFINITE
-
value is +Infinity
- BigDecimal::SIGN_NEGATIVE_INFINITE
-
value is -Infinity
- BigDecimal::SIGN_POSITIVE_FINITE
-
value is positive
- BigDecimal::SIGN_NEGATIVE_FINITE
-
value is negative
3623 3624 3625 3626 3627 3628 |
# File 'ext/bigdecimal/bigdecimal.c', line 3623 static VALUE BigDecimal_sign(VALUE self) { /* sign */ int s = GetVpValue(self, 1)->sign; return INT2FIX(s); } |
#split ⇒ Object
Splits a BigDecimal number into four parts, returned as an array of values.
The first value represents the sign of the BigDecimal, and is -1 or 1, or 0 if the BigDecimal is Not a Number.
The second value is a string representing the significant digits of the BigDecimal, with no leading zeros.
The third value is the base used for arithmetic (currently always 10) as an Integer.
The fourth value is an Integer exponent.
If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the string of significant digits with no leading zeros, and n is the exponent.
From these values, you can translate a BigDecimal to a float as follows:
sign, significant_digits, base, exponent = a.split
f = sign * "0.#{significant_digits}".to_f * (base ** exponent)
(Note that the to_f method is provided as a more convenient way to translate a BigDecimal to a Float.)
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 |
# File 'ext/bigdecimal/bigdecimal.c', line 2602 static VALUE BigDecimal_split(VALUE self) { ENTER(5); Real *vp; VALUE obj,str; ssize_t e, s; char *psz1; GUARD_OBJ(vp, GetVpValue(self, 1)); str = rb_str_new(0, VpNumOfChars(vp, "E")); psz1 = RSTRING_PTR(str); VpSzMantissa(vp, psz1); s = 1; if(psz1[0] == '-') { size_t len = strlen(psz1 + 1); memmove(psz1, psz1 + 1, len); psz1[len] = '\0'; s = -1; } if (psz1[0] == 'N') s = 0; /* NaN */ e = VpExponent10(vp); obj = rb_ary_new2(4); rb_ary_push(obj, INT2FIX(s)); rb_ary_push(obj, str); rb_str_resize(str, strlen(psz1)); rb_ary_push(obj, INT2FIX(10)); rb_ary_push(obj, SSIZET2NUM(e)); return obj; } |
#sqrt(nFig) ⇒ Object
sqrt(n)
Returns the square root of the value.
Result has at least n significant digits.
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 |
# File 'ext/bigdecimal/bigdecimal.c', line 2212 static VALUE BigDecimal_sqrt(VALUE self, VALUE nFig) { ENTER(5); Real *c, *a; size_t mx, n; GUARD_OBJ(a, GetVpValue(self, 1)); mx = a->Prec * (VpBaseFig() + 1); n = GetPrecisionInt(nFig) + VpDblFig() + BASE_FIG; if (mx <= n) mx = n; GUARD_OBJ(c, VpCreateRbObject(mx, "0", true)); VpSqrt(c, a); return VpCheckGetValue(c); } |
#sub(b, n) ⇒ Object
sub(value, digits) -> bigdecimal
Subtract the specified value.
e.g.
c = a.sub(b,n)
- digits
-
If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 |
# File 'ext/bigdecimal/bigdecimal.c', line 2119 static VALUE BigDecimal_sub2(VALUE self, VALUE b, VALUE n) { ENTER(2); Real *cv; SIGNED_VALUE mx = GetPrecisionInt(n); if (mx == 0) return BigDecimal_sub(self, b); else { size_t pl = VpSetPrecLimit(0); VALUE c = BigDecimal_sub(self, b); VpSetPrecLimit(pl); GUARD_OBJ(cv, GetVpValue(c, 1)); VpLeftRound(cv, VpGetRoundMode(), mx); return VpCheckGetValue(cv); } } |
#to_d ⇒ Object
call-seq:
a.to_d -> bigdecimal
Returns self.
require 'bigdecimal/util'
d = BigDecimal("3.14")
d.to_d # => 0.314e1
106 107 108 |
# File 'lib/bigdecimal/util.rb', line 106 def to_d self end |
#to_digits ⇒ Object
call-seq:
a.to_digits -> string
Converts a BigDecimal to a String of the form “nnnnnn.mmm”. This method is deprecated; use BigDecimal#to_s(“F”) instead.
require 'bigdecimal/util'
d = BigDecimal("3.14")
d.to_digits # => "3.14"
86 87 88 89 90 91 92 93 94 |
# File 'lib/bigdecimal/util.rb', line 86 def to_digits if self.nan? || self.infinite? || self.zero? self.to_s else i = self.to_i.to_s _,f,_,z = self.frac.split i + "." + ("0"*(-z)) + f end end |
#to_f ⇒ Object
Returns a new Float object having approximately the same value as the BigDecimal number. Normal accuracy limits and built-in errors of binary Float arithmetic apply.
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 |
# File 'ext/bigdecimal/bigdecimal.c', line 1102 static VALUE BigDecimal_to_f(VALUE self) { ENTER(1); Real *p; double d; SIGNED_VALUE e; char *buf; volatile VALUE str; GUARD_OBJ(p, GetVpValue(self, 1)); if (VpVtoD(&d, &e, p) != 1) return rb_float_new(d); if (e > (SIGNED_VALUE)(DBL_MAX_10_EXP+BASE_FIG)) goto overflow; if (e < (SIGNED_VALUE)(DBL_MIN_10_EXP-BASE_FIG)) goto underflow; str = rb_str_new(0, VpNumOfChars(p, "E")); buf = RSTRING_PTR(str); VpToString(p, buf, 0, 0); errno = 0; d = strtod(buf, 0); if (errno == ERANGE) { if (d == 0.0) goto underflow; if (fabs(d) >= HUGE_VAL) goto overflow; } return rb_float_new(d); overflow: VpException(VP_EXCEPTION_OVERFLOW, "BigDecimal to Float conversion", 0); if (BIGDECIMAL_NEGATIVE_P(p)) return rb_float_new(VpGetDoubleNegInf()); else return rb_float_new(VpGetDoublePosInf()); underflow: VpException(VP_EXCEPTION_UNDERFLOW, "BigDecimal to Float conversion", 0); if (BIGDECIMAL_NEGATIVE_P(p)) return rb_float_new(-0.0); else return rb_float_new(0.0); } |
#to_i ⇒ Object
Returns the value as an Integer.
If the BigDecimal is infinity or NaN, raises FloatDomainError.
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 |
# File 'ext/bigdecimal/bigdecimal.c', line 1055 static VALUE BigDecimal_to_i(VALUE self) { ENTER(5); ssize_t e, nf; Real *p; GUARD_OBJ(p, GetVpValue(self, 1)); BigDecimal_check_num(p); e = VpExponent10(p); if (e <= 0) return INT2FIX(0); nf = VpBaseFig(); if (e <= nf) { return LONG2NUM((long)(VpGetSign(p) * (DECDIG_DBL_SIGNED)p->frac[0])); } else { VALUE a = BigDecimal_split(self); VALUE digits = RARRAY_AREF(a, 1); VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0); VALUE ret; ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits); if (BIGDECIMAL_NEGATIVE_P(p)) { numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1)); } if (dpower < 0) { ret = rb_funcall(numerator, rb_intern("div"), 1, rb_funcall(INT2FIX(10), rb_intern("**"), 1, INT2FIX(-dpower))); } else { ret = rb_funcall(numerator, '*', 1, rb_funcall(INT2FIX(10), rb_intern("**"), 1, INT2FIX(dpower))); } if (RB_TYPE_P(ret, T_FLOAT)) { rb_raise(rb_eFloatDomainError, "Infinity"); } return ret; } } |
#to_int ⇒ Object
Returns the value as an Integer.
If the BigDecimal is infinity or NaN, raises FloatDomainError.
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 |
# File 'ext/bigdecimal/bigdecimal.c', line 1055 static VALUE BigDecimal_to_i(VALUE self) { ENTER(5); ssize_t e, nf; Real *p; GUARD_OBJ(p, GetVpValue(self, 1)); BigDecimal_check_num(p); e = VpExponent10(p); if (e <= 0) return INT2FIX(0); nf = VpBaseFig(); if (e <= nf) { return LONG2NUM((long)(VpGetSign(p) * (DECDIG_DBL_SIGNED)p->frac[0])); } else { VALUE a = BigDecimal_split(self); VALUE digits = RARRAY_AREF(a, 1); VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0); VALUE ret; ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits); if (BIGDECIMAL_NEGATIVE_P(p)) { numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1)); } if (dpower < 0) { ret = rb_funcall(numerator, rb_intern("div"), 1, rb_funcall(INT2FIX(10), rb_intern("**"), 1, INT2FIX(-dpower))); } else { ret = rb_funcall(numerator, '*', 1, rb_funcall(INT2FIX(10), rb_intern("**"), 1, INT2FIX(dpower))); } if (RB_TYPE_P(ret, T_FLOAT)) { rb_raise(rb_eFloatDomainError, "Infinity"); } return ret; } } |
#to_r ⇒ Object
Converts a BigDecimal to a Rational.
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 |
# File 'ext/bigdecimal/bigdecimal.c', line 1149 static VALUE BigDecimal_to_r(VALUE self) { Real *p; ssize_t sign, power, denomi_power; VALUE a, digits, numerator; p = GetVpValue(self, 1); BigDecimal_check_num(p); sign = VpGetSign(p); power = VpExponent10(p); a = BigDecimal_split(self); digits = RARRAY_AREF(a, 1); denomi_power = power - RSTRING_LEN(digits); numerator = rb_funcall(digits, rb_intern("to_i"), 0); if (sign < 0) { numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1)); } if (denomi_power < 0) { return rb_Rational(numerator, rb_funcall(INT2FIX(10), rb_intern("**"), 1, INT2FIX(-denomi_power))); } else { return rb_Rational1(rb_funcall(numerator, '*', 1, rb_funcall(INT2FIX(10), rb_intern("**"), 1, INT2FIX(denomi_power)))); } } |
#to_s(*args) ⇒ Object
to_s(s)
Converts the value to a string.
The default format looks like 0.xxxxEnn.
The optional parameter s consists of either an integer; or an optional ‘+’ or ‘ ’, followed by an optional number, followed by an optional ‘E’ or ‘F’.
If there is a ‘+’ at the start of s, positive values are returned with a leading ‘+’.
A space at the start of s returns positive values with a leading space.
If s contains a number, a space is inserted after each group of that many fractional digits.
If s ends with an ‘E’, engineering notation (0.xxxxEnn) is used.
If s ends with an ‘F’, conventional floating point notation is used.
Examples:
BigDecimal('-123.45678901234567890').to_s('5F')
#=> '-123.45678 90123 45678 9'
BigDecimal('123.45678901234567890').to_s('+8F')
#=> '+123.45678901 23456789'
BigDecimal('123.45678901234567890').to_s(' F')
#=> ' 123.4567890123456789'
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 |
# File 'ext/bigdecimal/bigdecimal.c', line 2507 static VALUE BigDecimal_to_s(int argc, VALUE *argv, VALUE self) { ENTER(5); int fmt = 0; /* 0: E format, 1: F format */ int fPlus = 0; /* 0: default, 1: set ' ' before digits, 2: set '+' before digits. */ Real *vp; volatile VALUE str; char *psz; char ch; size_t nc, mc = 0; SIGNED_VALUE m; VALUE f; GUARD_OBJ(vp, GetVpValue(self, 1)); if (rb_scan_args(argc, argv, "01", &f) == 1) { if (RB_TYPE_P(f, T_STRING)) { psz = StringValueCStr(f); if (*psz == ' ') { fPlus = 1; psz++; } else if (*psz == '+') { fPlus = 2; psz++; } while ((ch = *psz++) != 0) { if (ISSPACE(ch)) { continue; } if (!ISDIGIT(ch)) { if (ch == 'F' || ch == 'f') { fmt = 1; /* F format */ } break; } mc = mc*10 + ch - '0'; } } else { m = NUM2INT(f); if (m <= 0) { rb_raise(rb_eArgError, "argument must be positive"); } mc = (size_t)m; } } if (fmt) { nc = VpNumOfChars(vp, "F"); } else { nc = VpNumOfChars(vp, "E"); } if (mc > 0) { nc += (nc + mc - 1) / mc + 1; } str = rb_usascii_str_new(0, nc); psz = RSTRING_PTR(str); if (fmt) { VpToFString(vp, psz, mc, fPlus); } else { VpToString (vp, psz, mc, fPlus); } rb_str_resize(str, strlen(psz)); return str; } |
#truncate(*args) ⇒ Object
truncate(n)
Truncate to the nearest integer (by default), returning the result as a BigDecimal.
BigDecimal(‘3.14159’).truncate #=> 3 BigDecimal(‘8.7’).truncate #=> 8 BigDecimal(‘-9.9’).truncate #=> -9
If n is specified and positive, the fractional part of the result has no more than that many digits.
If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.
BigDecimal(‘3.14159’).truncate(3) #=> 3.141 BigDecimal(‘13345.234’).truncate(-2) #=> 13300.0
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 |
# File 'ext/bigdecimal/bigdecimal.c', line 2341 static VALUE BigDecimal_truncate(int argc, VALUE *argv, VALUE self) { ENTER(5); Real *c, *a; int iLoc; VALUE vLoc; size_t mx, pl = VpSetPrecLimit(0); if (rb_scan_args(argc, argv, "01", &vLoc) == 0) { iLoc = 0; } else { iLoc = NUM2INT(vLoc); } GUARD_OBJ(a, GetVpValue(self, 1)); mx = a->Prec * (VpBaseFig() + 1); GUARD_OBJ(c, VpCreateRbObject(mx, "0", true)); VpSetPrecLimit(pl); VpActiveRound(c, a, VP_ROUND_DOWN, iLoc); /* 0: truncate */ if (argc == 0) { return BigDecimal_to_i(VpCheckGetValue(c)); } return VpCheckGetValue(c); } |
#zero? ⇒ Boolean
Returns True if the value is zero.
1444 1445 1446 1447 1448 1449 |
# File 'ext/bigdecimal/bigdecimal.c', line 1444 static VALUE BigDecimal_zero(VALUE self) { Real *a = GetVpValue(self, 1); return VpIsZero(a) ? Qtrue : Qfalse; } |