Class: BigDecimal

Inherits:
Numeric
  • Object
show all
Defined in:
ext/bigdecimal/bigdecimal.c,
lib/bigdecimal/util.rb,
ext/bigdecimal/bigdecimal.c

Overview

BigDecimal provides arbitrary-precision floating point decimal arithmetic.

Introduction

Ruby provides built-in support for arbitrary precision integer arithmetic.

For example:

42**13 #=> 1265437718438866624512

BigDecimal provides similar support for very large or very accurate floating point numbers.

Decimal arithmetic is also useful for general calculation, because it provides the correct answers people expect–whereas normal binary floating point arithmetic often introduces subtle errors because of the conversion between base 10 and base 2.

For example, try:

sum = 0
10_000.times do
  sum = sum + 0.0001
end
print sum #=> 0.9999999999999062

and contrast with the output from:

require 'bigdecimal'

sum = BigDecimal("0")
10_000.times do
  sum = sum + BigDecimal("0.0001")
end
print sum #=> 0.1E1

Similarly:

(BigDecimal(“1.2”) - BigDecimal(“1.0”)) == BigDecimal(“0.2”) #=> true

(1.2 - 1.0) == 0.2 #=> false

A Note About Precision

For a calculation using a BigDecimal and another value, the precision of the result depends on the type of value:

  • If value is a Float, the precision is Float::DIG + 1.

  • If value is a Rational, the precision is larger than Float::DIG + 1.

  • If value is a BigDecimal, the precision is value‘s precision in the internal representation, which is platform-dependent.

  • If value is other object, the precision is determined by the result of BigDecimal(value).

Special features of accurate decimal arithmetic

Because BigDecimal is more accurate than normal binary floating point arithmetic, it requires some special values.

Infinity

BigDecimal sometimes needs to return infinity, for example if you divide a value by zero.

BigDecimal(“1.0”) / BigDecimal(“0.0”) #=> Infinity BigDecimal(“-1.0”) / BigDecimal(“0.0”) #=> -Infinity

You can represent infinite numbers to BigDecimal using the strings 'Infinity', '+Infinity' and '-Infinity' (case-sensitive)

Not a Number

When a computation results in an undefined value, the special value NaN (for ‘not a number’) is returned.

Example:

BigDecimal(“0.0”) / BigDecimal(“0.0”) #=> NaN

You can also create undefined values.

NaN is never considered to be the same as any other value, even NaN itself:

n = BigDecimal(‘NaN’) n == 0.0 #=> false n == n #=> false

Positive and negative zero

If a computation results in a value which is too small to be represented as a BigDecimal within the currently specified limits of precision, zero must be returned.

If the value which is too small to be represented is negative, a BigDecimal value of negative zero is returned.

BigDecimal(“1.0”) / BigDecimal(“-Infinity”) #=> -0.0

If the value is positive, a value of positive zero is returned.

BigDecimal(“1.0”) / BigDecimal(“Infinity”) #=> 0.0

(See BigDecimal.mode for how to specify limits of precision.)

Note that -0.0 and 0.0 are considered to be the same for the purposes of comparison.

Note also that in mathematics, there is no particular concept of negative or positive zero; true mathematical zero has no sign.

bigdecimal/util

When you require bigdecimal/util, the #to_d method will be available on BigDecimal and the native Integer, Float, Rational, and String classes:

require ‘bigdecimal/util’

42.to_d         # => 0.42e2
0.5.to_d        # => 0.5e0
(2/3r).to_d(3)  # => 0.667e0
"0.5".to_d      # => 0.5e0

License

Copyright © 2002 by Shigeo Kobayashi <[email protected]>.

BigDecimal is released under the Ruby and 2-clause BSD licenses. See LICENSE.txt for details.

Maintained by mrkn <[email protected]> and ruby-core members.

Documented by zzak <[email protected]>, mathew <[email protected]>, and many other contributors.

Constant Summary collapse

VERSION =

The version of bigdecimal library

rb_str_new2(RUBY_BIGDECIMAL_VERSION)
BASE =

Base value used in internal calculations. On a 32 bit system, BASE is 10000, indicating that calculation is done in groups of 4 digits. (If it were larger, BASE**2 wouldn’t fit in 32 bits, so you couldn’t guarantee that two groups could always be multiplied together without overflow.)

INT2FIX((SIGNED_VALUE)VpBaseVal())
EXCEPTION_ALL =

Determines whether overflow, underflow or zero divide result in an exception being thrown. See BigDecimal.mode.

0xff
EXCEPTION_NaN =

Determines what happens when the result of a computation is not a number (NaN). See BigDecimal.mode.

0x02
EXCEPTION_INFINITY =

Determines what happens when the result of a computation is infinity. See BigDecimal.mode.

0x01
EXCEPTION_UNDERFLOW =

Determines what happens when the result of a computation is an underflow (a result too small to be represented). See BigDecimal.mode.

0x04
EXCEPTION_OVERFLOW =

Determines what happens when the result of a computation is an overflow (a result too large to be represented). See BigDecimal.mode.

0x01
EXCEPTION_ZERODIVIDE =

Determines what happens when a division by zero is performed. See BigDecimal.mode.

0x10
ROUND_MODE =

Determines what happens when a result must be rounded in order to fit in the appropriate number of significant digits. See BigDecimal.mode.

0x100
ROUND_UP =

Indicates that values should be rounded away from zero. See BigDecimal.mode.

1
ROUND_DOWN =

Indicates that values should be rounded towards zero. See BigDecimal.mode.

2
ROUND_HALF_UP =

Indicates that digits >= 5 should be rounded up, others rounded down. See BigDecimal.mode.

3
ROUND_HALF_DOWN =

Indicates that digits >= 6 should be rounded up, others rounded down. See BigDecimal.mode.

4
ROUND_CEILING =

Round towards +Infinity. See BigDecimal.mode.

5
ROUND_FLOOR =

Round towards -Infinity. See BigDecimal.mode.

6
ROUND_HALF_EVEN =

Round towards the even neighbor. See BigDecimal.mode.

7
SIGN_NaN =

Indicates that a value is not a number. See BigDecimal.sign.

0
SIGN_POSITIVE_ZERO =

Indicates that a value is +0. See BigDecimal.sign.

1
SIGN_NEGATIVE_ZERO =

Indicates that a value is -0. See BigDecimal.sign.

-1
SIGN_POSITIVE_FINITE =

Indicates that a value is positive and finite. See BigDecimal.sign.

2
SIGN_NEGATIVE_FINITE =

Indicates that a value is negative and finite. See BigDecimal.sign.

-2
SIGN_POSITIVE_INFINITE =

Indicates that a value is positive and infinite. See BigDecimal.sign.

3
SIGN_NEGATIVE_INFINITE =

Indicates that a value is negative and infinite. See BigDecimal.sign.

-3
INFINITY =

Special value constants

BIGDECIMAL_POSITIVE_INFINITY
NAN =
BIGDECIMAL_NAN

Class Method Summary collapse

Instance Method Summary collapse

Class Method Details

._load(str) ⇒ Object

Internal method used to provide marshalling support. See the Marshal module.



590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
# File 'ext/bigdecimal/bigdecimal.c', line 590

static VALUE
BigDecimal_load(VALUE self, VALUE str)
{
    ENTER(2);
    Real *pv;
    unsigned char *pch;
    unsigned char ch;
    unsigned long m=0;

    pch = (unsigned char *)StringValueCStr(str);
    /* First get max prec */
    while((*pch) != (unsigned char)'\0' && (ch = *pch++) != (unsigned char)':') {
        if(!ISDIGIT(ch)) {
            rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string");
        }
        m = m*10 + (unsigned long)(ch-'0');
    }
    if (m > VpBaseFig()) m -= VpBaseFig();
    GUARD_OBJ(pv, VpNewRbClass(m, (char *)pch, self, true, true));
    m /= VpBaseFig();
    if (m && pv->MaxPrec > m) {
  pv->MaxPrec = m+1;
    }
    return VpCheckGetValue(pv);
}

.double_figInteger

Returns the number of digits a Float object is allowed to have;

the result is system-dependent:

  BigDecimal.double_fig # => 16

Returns:



267
268
269
270
271
# File 'ext/bigdecimal/bigdecimal.c', line 267

static VALUE
BigDecimal_double_fig(VALUE self)
{
    return INT2FIX(VpDblFig());
}

.interpret_loosely(str) ⇒ Object



3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
# File 'ext/bigdecimal/bigdecimal.c', line 3566

static VALUE
BigDecimal_s_interpret_loosely(VALUE klass, VALUE str)
{
    char const *c_str = StringValueCStr(str);
    Real *vp = VpNewRbClass(0, c_str, klass, false, true);
    if (!vp)
        return Qnil;
    else
        return VpCheckGetValue(vp);
}

.limit(*args) ⇒ Object

BigDecimal.limit(digits)

Limit the number of significant digits in newly created BigDecimal numbers to the specified value. Rounding is performed as necessary, as specified by BigDecimal.mode.

A limit of 0, the default, means no upper limit.

The limit specified by this method takes less priority over any limit specified to instance methods such as ceil, floor, truncate, or round.



3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
# File 'ext/bigdecimal/bigdecimal.c', line 3589

static VALUE
BigDecimal_limit(int argc, VALUE *argv, VALUE self)
{
    VALUE  nFig;
    VALUE  nCur = SIZET2NUM(VpGetPrecLimit());

    if (rb_scan_args(argc, argv, "01", &nFig) == 1) {
  int nf;
  if (NIL_P(nFig)) return nCur;
  nf = NUM2INT(nFig);
  if (nf < 0) {
      rb_raise(rb_eArgError, "argument must be positive");
  }
  VpSetPrecLimit(nf);
    }
    return nCur;
}

.mode(mode, setting = nil) ⇒ Integer

Returns an integer representing the mode settings for exception handling and rounding.

These modes control exception handling:

  • BigDecimal::EXCEPTION_NaN.

  • BigDecimal::EXCEPTION_INFINITY.

  • BigDecimal::EXCEPTION_UNDERFLOW.

  • BigDecimal::EXCEPTION_OVERFLOW.

  • BigDecimal::EXCEPTION_ZERODIVIDE.

  • BigDecimal::EXCEPTION_ALL.

Values for setting for exception handling:

  • true: sets the given mode to true.

  • false: sets the given mode to false.

  • nil: does not modify the mode settings.

You can use method BigDecimal.save_exception_mode to temporarily change, and then automatically restore, exception modes.

For clarity, some examples below begin by setting all exception modes to false.

This mode controls the way rounding is to be performed:

  • BigDecimal::ROUND_MODE

You can use method BigDecimal.save_rounding_mode to temporarily change, and then automatically restore, the rounding mode.

NaNs

Mode BigDecimal::EXCEPTION_NaN controls behavior when a BigDecimal NaN is created.

Settings:

  • false (default): Returns BigDecimal('NaN').

  • true: Raises FloatDomainError.

Examples:

BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
BigDecimal('NaN')                                 # => NaN
BigDecimal.mode(BigDecimal::EXCEPTION_NaN, true)  # => 2
BigDecimal('NaN') # Raises FloatDomainError

Infinities

Mode BigDecimal::EXCEPTION_INFINITY controls behavior when a BigDecimal Infinity or -Infinity is created. Settings:

  • false (default): Returns BigDecimal('Infinity') or BigDecimal('-Infinity').

  • true: Raises FloatDomainError.

Examples:

BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false)     # => 0
BigDecimal('Infinity')                                # => Infinity
BigDecimal('-Infinity')                               # => -Infinity
BigDecimal.mode(BigDecimal::EXCEPTION_INFINITY, true) # => 1
BigDecimal('Infinity')  # Raises FloatDomainError
BigDecimal('-Infinity') # Raises FloatDomainError

Underflow

Mode BigDecimal::EXCEPTION_UNDERFLOW controls behavior when a BigDecimal underflow occurs. Settings:

  • false (default): Returns BigDecimal('0') or BigDecimal('-Infinity').

  • true: Raises FloatDomainError.

Examples:

BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false)      # => 0
def flow_under
  x = BigDecimal('0.1')
  100.times { x *= x }
end
flow_under                                             # => 100
BigDecimal.mode(BigDecimal::EXCEPTION_UNDERFLOW, true) # => 4
flow_under # Raises FloatDomainError

Overflow

Mode BigDecimal::EXCEPTION_OVERFLOW controls behavior when a BigDecimal overflow occurs. Settings:

  • false (default): Returns BigDecimal('Infinity') or BigDecimal('-Infinity').

  • true: Raises FloatDomainError.

Examples:

BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false)     # => 0
def flow_over
  x = BigDecimal('10')
  100.times { x *= x }
end
flow_over                                             # => 100
BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, true) # => 1
flow_over # Raises FloatDomainError

Zero Division

Mode BigDecimal::EXCEPTION_ZERODIVIDE controls behavior when a zero-division occurs. Settings:

  • false (default): Returns BigDecimal('Infinity') or BigDecimal('-Infinity').

  • true: Raises FloatDomainError.

Examples:

BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false)       # => 0
one = BigDecimal('1')
zero = BigDecimal('0')
one / zero                                              # => Infinity
BigDecimal.mode(BigDecimal::EXCEPTION_ZERODIVIDE, true) # => 16
one / zero # Raises FloatDomainError

All Exceptions

Mode BigDecimal::EXCEPTION_ALL controls all of the above:

BigDecimal.mode(BigDecimal::EXCEPTION_ALL, false) # => 0
BigDecimal.mode(BigDecimal::EXCEPTION_ALL, true)  # => 23

Rounding

Mode BigDecimal::ROUND_MODE controls the way rounding is to be performed; its setting values are:

  • ROUND_UP: Round away from zero. Aliased as :up.

  • ROUND_DOWN: Round toward zero. Aliased as :down and :truncate.

  • ROUND_HALF_UP: Round toward the nearest neighbor; if the neighbors are equidistant, round away from zero. Aliased as :half_up and :default.

  • ROUND_HALF_DOWN: Round toward the nearest neighbor; if the neighbors are equidistant, round toward zero. Aliased as :half_down.

  • ROUND_HALF_EVEN (Banker’s rounding): Round toward the nearest neighbor; if the neighbors are equidistant, round toward the even neighbor. Aliased as :half_even and :banker.

  • ROUND_CEILING: Round toward positive infinity. Aliased as :ceiling and :ceil.

  • ROUND_FLOOR: Round toward negative infinity. Aliased as :floor:.

Returns:



862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
# File 'ext/bigdecimal/bigdecimal.c', line 862

static VALUE
BigDecimal_mode(int argc, VALUE *argv, VALUE self)
{
    VALUE which;
    VALUE val;
    unsigned long f,fo;

    rb_scan_args(argc, argv, "11", &which, &val);
    f = (unsigned long)NUM2INT(which);

    if (f & VP_EXCEPTION_ALL) {
  /* Exception mode setting */
  fo = VpGetException();
  if (val == Qnil) return INT2FIX(fo);
  if (val != Qfalse && val!=Qtrue) {
      rb_raise(rb_eArgError, "second argument must be true or false");
      return Qnil; /* Not reached */
  }
  if (f & VP_EXCEPTION_INFINITY) {
      VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_INFINITY) :
      (fo & (~VP_EXCEPTION_INFINITY))));
  }
  fo = VpGetException();
  if (f & VP_EXCEPTION_NaN) {
      VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_NaN) :
      (fo & (~VP_EXCEPTION_NaN))));
  }
  fo = VpGetException();
  if (f & VP_EXCEPTION_UNDERFLOW) {
      VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_UNDERFLOW) :
      (fo & (~VP_EXCEPTION_UNDERFLOW))));
  }
  fo = VpGetException();
  if(f & VP_EXCEPTION_ZERODIVIDE) {
      VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_ZERODIVIDE) :
      (fo & (~VP_EXCEPTION_ZERODIVIDE))));
  }
  fo = VpGetException();
  return INT2FIX(fo);
    }
    if (VP_ROUND_MODE == f) {
  /* Rounding mode setting */
  unsigned short sw;
  fo = VpGetRoundMode();
  if (NIL_P(val)) return INT2FIX(fo);
  sw = check_rounding_mode(val);
  fo = VpSetRoundMode(sw);
  return INT2FIX(fo);
    }
    rb_raise(rb_eTypeError, "first argument for BigDecimal.mode invalid");
    return Qnil;
}

.save_exception_mode { ... } ⇒ Object

Execute the provided block, but preserve the exception mode

BigDecimal.save_exception_mode do
  BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false)
  BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false)

  BigDecimal(BigDecimal('Infinity'))
  BigDecimal(BigDecimal('-Infinity'))
  BigDecimal(BigDecimal('NaN'))
end

For use with the BigDecimal::EXCEPTION_*

See BigDecimal.mode

Yields:



3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
# File 'ext/bigdecimal/bigdecimal.c', line 3648

static VALUE
BigDecimal_save_exception_mode(VALUE self)
{
    unsigned short const exception_mode = VpGetException();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetException(exception_mode);
    if (state) rb_jump_tag(state);
    return ret;
}

.save_limit { ... } ⇒ Object

Execute the provided block, but preserve the precision limit

BigDecimal.limit(100)
puts BigDecimal.limit
BigDecimal.save_limit do
    BigDecimal.limit(200)
    puts BigDecimal.limit
end
puts BigDecimal.limit

Yields:



3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
# File 'ext/bigdecimal/bigdecimal.c', line 3698

static VALUE
BigDecimal_save_limit(VALUE self)
{
    size_t const limit = VpGetPrecLimit();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetPrecLimit(limit);
    if (state) rb_jump_tag(state);
    return ret;
}

.save_rounding_mode { ... } ⇒ Object

Execute the provided block, but preserve the rounding mode

BigDecimal.save_rounding_mode do
  BigDecimal.mode(BigDecimal::ROUND_MODE, :up)
  puts BigDecimal.mode(BigDecimal::ROUND_MODE)
end

For use with the BigDecimal::ROUND_*

See BigDecimal.mode

Yields:



3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
# File 'ext/bigdecimal/bigdecimal.c', line 3673

static VALUE
BigDecimal_save_rounding_mode(VALUE self)
{
    unsigned short const round_mode = VpGetRoundMode();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetRoundMode(round_mode);
    if (state) rb_jump_tag(state);
    return ret;
}

Instance Method Details

#%Object

%: a%b = a - (a.to_f/b).floor * b



1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
# File 'ext/bigdecimal/bigdecimal.c', line 1858

static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
    ENTER(3);
    Real *div = NULL, *mod = NULL;

    if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
  SAVE(div); SAVE(mod);
        return VpCheckGetValue(mod);
    }
    return DoSomeOne(self, r, '%');
}

#*(r) ⇒ Object



1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
# File 'ext/bigdecimal/bigdecimal.c', line 1589

static VALUE
BigDecimal_mult(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    if (RB_TYPE_P(r, T_FLOAT)) {
        b = GetVpValueWithPrec(r, 0, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
  b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
  b = GetVpValue(r,0);
    }

    if (!b) return DoSomeOne(self, r, '*');
    SAVE(b);

    mx = a->Prec + b->Prec;
    GUARD_OBJ(c, VpCreateRbObject(mx *(VpBaseFig() + 1), "0", true));
    VpMult(c, a, b);
    return VpCheckGetValue(c);
}

#**(other) ⇒ Object

Returns the BigDecimal value of self raised to power other:

b = BigDecimal('3.14')
b ** 2              # => 0.98596e1
b ** 2.0            # => 0.98596e1
b ** Rational(2, 1) # => 0.98596e1

Related: BigDecimal#power.



3046
3047
3048
3049
3050
# File 'ext/bigdecimal/bigdecimal.c', line 3046

static VALUE
BigDecimal_power_op(VALUE self, VALUE exp)
{
    return BigDecimal_power(1, &exp, self);
}

#+(value) ⇒ Object

Returns the BigDecimal sum of self and value:

b = BigDecimal('111111.111') # => 0.111111111e6
b + 2                        # => 0.111113111e6
b + 2.0                      # => 0.111113111e6
b + Rational(2, 1)           # => 0.111113111e6
b + Complex(2, 0)            # => (0.111113111e6+0i)

See the Note About Precision.



1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
# File 'ext/bigdecimal/bigdecimal.c', line 1253

static VALUE
BigDecimal_add(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    if (RB_TYPE_P(r, T_FLOAT)) {
  b = GetVpValueWithPrec(r, 0, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
  b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
  b = GetVpValue(r, 0);
    }

    if (!b) return DoSomeOne(self,r,'+');
    SAVE(b);

    if (VpIsNaN(b)) return b->obj;
    if (VpIsNaN(a)) return a->obj;

    mx = GetAddSubPrec(a, b);
    if (mx == (size_t)-1L) {
        GUARD_OBJ(c, VpCreateRbObject(VpBaseFig() + 1, "0", true));
  VpAddSub(c, a, b, 1);
    }
    else {
        GUARD_OBJ(c, VpCreateRbObject(mx * (VpBaseFig() + 1), "0", true));
  if(!mx) {
      VpSetInf(c, VpGetSign(a));
  }
  else {
      VpAddSub(c, a, b, 1);
  }
    }
    return VpCheckGetValue(c);
}

#+self

Returns self:

+BigDecimal(5)  # => 0.5e1
+BigDecimal(-5) # => -0.5e1

Returns:

  • (self)


1231
1232
1233
1234
1235
# File 'ext/bigdecimal/bigdecimal.c', line 1231

static VALUE
BigDecimal_uplus(VALUE self)
{
    return self;
}

#-(value) ⇒ Object

Returns the BigDecimal difference of self and value:

b = BigDecimal('333333.333') # => 0.333333333e6
b - 2                        # => 0.333331333e6
b - 2.0                      # => 0.333331333e6
b - Rational(2, 1)           # => 0.333331333e6
b - Complex(2, 0)            # => (0.333331333e6+0i)

See the Note About Precision.



1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
# File 'ext/bigdecimal/bigdecimal.c', line 1308

static VALUE
BigDecimal_sub(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self,1));
    if (RB_TYPE_P(r, T_FLOAT)) {
  b = GetVpValueWithPrec(r, 0, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
  b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
  b = GetVpValue(r,0);
    }

    if (!b) return DoSomeOne(self,r,'-');
    SAVE(b);

    if (VpIsNaN(b)) return b->obj;
    if (VpIsNaN(a)) return a->obj;

    mx = GetAddSubPrec(a,b);
    if (mx == (size_t)-1L) {
        GUARD_OBJ(c, VpCreateRbObject(VpBaseFig() + 1, "0", true));
  VpAddSub(c, a, b, -1);
    }
    else {
        GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0", true));
  if (!mx) {
      VpSetInf(c,VpGetSign(a));
  }
  else {
      VpAddSub(c, a, b, -1);
  }
    }
    return VpCheckGetValue(c);
}

#-Object

Returns the BigDecimal negation of self:

b0 = BigDecimal('1.5')
b1 = -b0 # => -0.15e1
b2 = -b1 # => 0.15e1


1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
# File 'ext/bigdecimal/bigdecimal.c', line 1578

static VALUE
BigDecimal_neg(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    GUARD_OBJ(a, GetVpValue(self, 1));
    GUARD_OBJ(c, VpCreateRbObject(a->Prec *(VpBaseFig() + 1), "0", true));
    VpAsgn(c, a, -1);
    return VpCheckGetValue(c);
}

#/Object

For c = self/r: with round operation



1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
# File 'ext/bigdecimal/bigdecimal.c', line 1680

static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
    ENTER(5);
    Real *c=NULL, *res=NULL, *div = NULL;
    r = BigDecimal_divide(self, r, &c, &res, &div);
    if (!NIL_P(r)) return r; /* coerced by other */
    SAVE(c); SAVE(res); SAVE(div);
    /* a/b = c + r/b */
    /* c xxxxx
       r 00000yyyyy  ==> (y/b)*BASE >= HALF_BASE
     */
    /* Round */
    if (VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */
        VpInternalRound(c, 0, c->frac[c->Prec-1], (DECDIG)(VpBaseVal() * (DECDIG_DBL)res->frac[0] / div->frac[0]));
    }
    return VpCheckGetValue(c);
}

#<(other) ⇒ Boolean

Returns true if self is less than other, false otherwise:

b = BigDecimal('1.5') # => 0.15e1
b < 2                 # => true
b < 2.0               # => true
b < Rational(2, 1)    # => true
b < 1.5               # => false

Raises an exception if the comparison cannot be made.

Returns:

  • (Boolean)


1498
1499
1500
1501
1502
# File 'ext/bigdecimal/bigdecimal.c', line 1498

static VALUE
BigDecimal_lt(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '<');
}

#<=(other) ⇒ Boolean

Returns true if self is less or equal to than other, false otherwise:

b = BigDecimal('1.5') # => 0.15e1
b <= 2                # => true
b <= 2.0              # => true
b <= Rational(2, 1)   # => true
b <= 1.5              # => true
b < 1                 # => false

Raises an exception if the comparison cannot be made.

Returns:

  • (Boolean)


1519
1520
1521
1522
1523
# File 'ext/bigdecimal/bigdecimal.c', line 1519

static VALUE
BigDecimal_le(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, 'L');
}

#<=>(r) ⇒ Object

The comparison operator. a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.



1462
1463
1464
1465
1466
# File 'ext/bigdecimal/bigdecimal.c', line 1462

static VALUE
BigDecimal_comp(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '*');
}

#==(r) ⇒ Object

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

BigDecimal('1.0') == 1.0  #=> true


1478
1479
1480
1481
1482
# File 'ext/bigdecimal/bigdecimal.c', line 1478

static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}

#===(r) ⇒ Object

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

BigDecimal('1.0') == 1.0  #=> true


1478
1479
1480
1481
1482
# File 'ext/bigdecimal/bigdecimal.c', line 1478

static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}

#>(other) ⇒ Boolean

Returns true if self is greater than other, false otherwise:

b = BigDecimal('1.5')
b > 1              # => true
b > 1.0            # => true
b > Rational(1, 1) # => true
b > 2              # => false

Raises an exception if the comparison cannot be made.

Returns:

  • (Boolean)


1539
1540
1541
1542
1543
# File 'ext/bigdecimal/bigdecimal.c', line 1539

static VALUE
BigDecimal_gt(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '>');
}

#>=(other) ⇒ Boolean

Returns true if self is greater than or equal to other, false otherwise:

b = BigDecimal('1.5')
b >= 1              # => true
b >= 1.0            # => true
b >= Rational(1, 1) # => true
b >= 1.5            # => true
b > 2               # => false

Raises an exception if the comparison cannot be made.

Returns:

  • (Boolean)


1560
1561
1562
1563
1564
# File 'ext/bigdecimal/bigdecimal.c', line 1560

static VALUE
BigDecimal_ge(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, 'G');
}

#_dumpString

Returns a string representing the marshalling of self. See module Marshal.

inf = BigDecimal('Infinity') # => Infinity
dumped = inf._dump           # => "9:Infinity"
BigDecimal._load(dumped)     # => Infinity

Returns:



568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
# File 'ext/bigdecimal/bigdecimal.c', line 568

static VALUE
BigDecimal_dump(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *vp;
    char *psz;
    VALUE dummy;
    volatile VALUE dump;

    rb_scan_args(argc, argv, "01", &dummy);
    GUARD_OBJ(vp,GetVpValue(self, 1));
    dump = rb_str_new(0, VpNumOfChars(vp, "E")+50);
    psz = RSTRING_PTR(dump);
    sprintf(psz, "%"PRIuSIZE":", VpMaxPrec(vp)*VpBaseFig());
    VpToString(vp, psz+strlen(psz), 0, 0);
    rb_str_resize(dump, strlen(psz));
    return dump;
}

#absObject

Returns the BigDecimal absolute value of self:

BigDecimal('5').abs  # => 0.5e1
BigDecimal('-3').abs # => 0.3e1


2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
# File 'ext/bigdecimal/bigdecimal.c', line 2190

static VALUE
BigDecimal_abs(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec *(VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0", true));
    VpAsgn(c, a, 1);
    VpChangeSign(c, 1);
    return VpCheckGetValue(c);
}

#add(value, ndigits) ⇒ Object

Returns the BigDecimal sum of self and value with a precision of ndigits decimal digits.

When ndigits is less than the number of significant digits in the sum, the sum is rounded to that number of digits, according to the current rounding mode; see BigDecimal.mode.

Examples:

# Set the rounding mode.
BigDecimal.mode(BigDecimal::ROUND_MODE, :half_up)
b = BigDecimal('111111.111')
b.add(1, 0)               # => 0.111112111e6
b.add(1, 3)               # => 0.111e6
b.add(1, 6)               # => 0.111112e6
b.add(1, 15)              # => 0.111112111e6
b.add(1.0, 15)            # => 0.111112111e6
b.add(Rational(1, 1), 15) # => 0.111112111e6


2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
# File 'ext/bigdecimal/bigdecimal.c', line 2089

static VALUE
BigDecimal_add2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = GetPrecisionInt(n);
    if (mx == 0) return BigDecimal_add(self, b);
    else {
  size_t pl = VpSetPrecLimit(0);
  VALUE   c = BigDecimal_add(self, b);
  VpSetPrecLimit(pl);
  GUARD_OBJ(cv, GetVpValue(c, 1));
  VpLeftRound(cv, VpGetRoundMode(), mx);
        return VpCheckGetValue(cv);
    }
}

#ceil(*args) ⇒ Object

ceil(n)

Return the smallest integer greater than or equal to the value, as a BigDecimal.

BigDecimal(‘3.14159’).ceil #=> 4 BigDecimal(‘-9.1’).ceil #=> -9

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).ceil(3) #=> 3.142 BigDecimal(‘13345.234’).ceil(-2) #=> 13400.0



2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
# File 'ext/bigdecimal/bigdecimal.c', line 2448

static VALUE
BigDecimal_ceil(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);

    if (rb_scan_args(argc, argv, "01", &vLoc) == 0) {
  iLoc = 0;
    } else {
  iLoc = NUM2INT(vLoc);
    }

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0", true));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, VP_ROUND_CEIL, iLoc);
    if (argc == 0) {
        return BigDecimal_to_i(VpCheckGetValue(c));
    }
    return VpCheckGetValue(c);
}

#cloneObject



3068
3069
3070
3071
3072
# File 'ext/bigdecimal/bigdecimal.c', line 3068

static VALUE
BigDecimal_clone(VALUE self)
{
  return self;
}

#coerce(other) ⇒ Object

The coerce method provides support for Ruby type coercion. It is not enabled by default.

This means that binary operations like + * / or - can often be performed on a BigDecimal and an object of another type, if the other object can be coerced into a BigDecimal value.

e.g.

a = BigDecimal("1.0")
b = a / 2.0 #=> 0.5

Note that coercing a String to a BigDecimal is not supported by default; it requires a special compile-time option when building Ruby.



1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
# File 'ext/bigdecimal/bigdecimal.c', line 1195

static VALUE
BigDecimal_coerce(VALUE self, VALUE other)
{
    ENTER(2);
    VALUE obj;
    Real *b;

    if (RB_TYPE_P(other, T_FLOAT)) {
  GUARD_OBJ(b, GetVpValueWithPrec(other, 0, 1));
        obj = rb_assoc_new(VpCheckGetValue(b), self);
    }
    else {
  if (RB_TYPE_P(other, T_RATIONAL)) {
      Real* pv = DATA_PTR(self);
      GUARD_OBJ(b, GetVpValueWithPrec(other, pv->Prec*VpBaseFig(), 1));
  }
  else {
      GUARD_OBJ(b, GetVpValue(other, 1));
  }
  obj = rb_assoc_new(b->obj, self);
    }

    return obj;
}

#div(*args) ⇒ Object

call-seq:

div(value)  -> integer
div(value, digits)  -> bigdecimal or integer

Divide by the specified value.

digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.

If digits is 0, the result is the same as for the / operator or #quo.

If digits is not specified, the result is an integer, by analogy with Float#div; see also BigDecimal#divmod.

See BigDecimal#/. See BigDecimal#quo.

Examples:

a = BigDecimal("4")
b = BigDecimal("3")

a.div(b, 3)  # => 0.133e1

a.div(b, 0)  # => 0.1333333333333333333e1
a / b        # => 0.1333333333333333333e1
a.quo(b)     # => 0.1333333333333333333e1

a.div(b)     # => 1


2054
2055
2056
2057
2058
2059
2060
2061
2062
# File 'ext/bigdecimal/bigdecimal.c', line 2054

static VALUE
BigDecimal_div3(int argc, VALUE *argv, VALUE self)
{
    VALUE b,n;

    rb_scan_args(argc, argv, "11", &b, &n);

    return BigDecimal_div2(self, b, n);
}

#divmod(r) ⇒ Object

divmod(value)

Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers. The quotient is rounded towards negative infinity.

For example:

require 'bigdecimal'

a = BigDecimal("42")
b = BigDecimal("9")

q, m = a.divmod(b)

c = q * b + m

a == c  #=> true

The quotient q is (a/b).floor, and the modulus is the amount that must be added to q * b to get a.



1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
# File 'ext/bigdecimal/bigdecimal.c', line 1956

static VALUE
BigDecimal_divmod(VALUE self, VALUE r)
{
    ENTER(5);
    Real *div = NULL, *mod = NULL;

    if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
  SAVE(div); SAVE(mod);
        return rb_assoc_new(VpCheckGetValue(div), VpCheckGetValue(mod));
    }
    return DoSomeOne(self,r,rb_intern("divmod"));
}

#dupObject



3068
3069
3070
3071
3072
# File 'ext/bigdecimal/bigdecimal.c', line 3068

static VALUE
BigDecimal_clone(VALUE self)
{
  return self;
}

#eql?(r) ⇒ Boolean

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

BigDecimal('1.0') == 1.0  #=> true

Returns:

  • (Boolean)


1478
1479
1480
1481
1482
# File 'ext/bigdecimal/bigdecimal.c', line 1478

static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}

#exponentObject

Returns the exponent of the BigDecimal number, as an Integer.

If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of digits with no leading zeros, then n is the exponent.



2639
2640
2641
2642
2643
2644
# File 'ext/bigdecimal/bigdecimal.c', line 2639

static VALUE
BigDecimal_exponent(VALUE self)
{
    ssize_t e = VpExponent10(GetVpValue(self, 1));
    return SSIZET2NUM(e);
}

#finite?Boolean

Returns True if the value is finite (not NaN or infinite).

Returns:

  • (Boolean)


1034
1035
1036
1037
1038
1039
1040
1041
# File 'ext/bigdecimal/bigdecimal.c', line 1034

static VALUE
BigDecimal_IsFinite(VALUE self)
{
    Real *p = GetVpValue(self, 1);
    if (VpIsNaN(p)) return Qfalse;
    if (VpIsInf(p)) return Qfalse;
    return Qtrue;
}

#fixObject

Return the integer part of the number, as a BigDecimal.



2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
# File 'ext/bigdecimal/bigdecimal.c', line 2231

static VALUE
BigDecimal_fix(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec *(VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0", true));
    VpActiveRound(c, a, VP_ROUND_DOWN, 0); /* 0: round off */
    return VpCheckGetValue(c);
}

#floor(*args) ⇒ Object

floor(n)

Return the largest integer less than or equal to the value, as a BigDecimal.

BigDecimal(‘3.14159’).floor #=> 3 BigDecimal(‘-9.1’).floor #=> -10

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).floor(3) #=> 3.141 BigDecimal(‘13345.234’).floor(-2) #=> 13300.0



2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
# File 'ext/bigdecimal/bigdecimal.c', line 2401

static VALUE
BigDecimal_floor(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);

    if (rb_scan_args(argc, argv, "01", &vLoc)==0) {
  iLoc = 0;
    }
    else {
  iLoc = NUM2INT(vLoc);
    }

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0", true));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, VP_ROUND_FLOOR, iLoc);
#ifdef BIGDECIMAL_DEBUG
    VPrint(stderr, "floor: c=%\n", c);
#endif
    if (argc == 0) {
        return BigDecimal_to_i(VpCheckGetValue(c));
    }
    return VpCheckGetValue(c);
}

#fracObject

Return the fractional part of the number, as a BigDecimal.



2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
# File 'ext/bigdecimal/bigdecimal.c', line 2370

static VALUE
BigDecimal_frac(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0", true));
    VpFrac(c, a);
    return VpCheckGetValue(c);
}

#hashInteger

Returns the integer hash value for self.

Two instances of BigDecimal have the same hash value if and only if they have equal:

  • Sign.

  • Fractional part.

  • Exponent.

Returns:



539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
# File 'ext/bigdecimal/bigdecimal.c', line 539

static VALUE
BigDecimal_hash(VALUE self)
{
    ENTER(1);
    Real *p;
    st_index_t hash;

    GUARD_OBJ(p, GetVpValue(self, 1));
    hash = (st_index_t)p->sign;
    /* hash!=2: the case for 0(1),NaN(0) or +-Infinity(3) is sign itself */
    if(hash == 2 || hash == (st_index_t)-2) {
        hash ^= rb_memhash(p->frac, sizeof(DECDIG)*p->Prec);
        hash += p->exponent;
    }
    return ST2FIX(hash);
}

#infinite?Boolean

Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity.

Returns:

  • (Boolean)


1024
1025
1026
1027
1028
1029
1030
1031
# File 'ext/bigdecimal/bigdecimal.c', line 1024

static VALUE
BigDecimal_IsInfinite(VALUE self)
{
    Real *p = GetVpValue(self, 1);
    if (VpIsPosInf(p)) return INT2FIX(1);
    if (VpIsNegInf(p)) return INT2FIX(-1);
    return Qnil;
}

#inspectObject

Returns a string representation of self.

BigDecimal("1234.5678").inspect
  #=> "0.12345678e4"


2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
# File 'ext/bigdecimal/bigdecimal.c', line 2651

static VALUE
BigDecimal_inspect(VALUE self)
{
    ENTER(5);
    Real *vp;
    volatile VALUE str;
    size_t nc;

    GUARD_OBJ(vp, GetVpValue(self, 1));
    nc = VpNumOfChars(vp, "E");

    str = rb_str_new(0, nc);
    VpToString(vp, RSTRING_PTR(str), 0, 0);
    rb_str_resize(str, strlen(RSTRING_PTR(str)));
    return str;
}

#moduloObject

%: a%b = a - (a.to_f/b).floor * b



1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
# File 'ext/bigdecimal/bigdecimal.c', line 1858

static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
    ENTER(3);
    Real *div = NULL, *mod = NULL;

    if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
  SAVE(div); SAVE(mod);
        return VpCheckGetValue(mod);
    }
    return DoSomeOne(self, r, '%');
}

#mult(other, ndigits) ⇒ Object

Returns the BigDecimal product of self and value with a precision of ndigits decimal digits.

When ndigits is less than the number of significant digits in the sum, the sum is rounded to that number of digits, according to the current rounding mode; see BigDecimal.mode.

Examples:

# Set the rounding mode.
BigDecimal.mode(BigDecimal::ROUND_MODE, :half_up)
b = BigDecimal('555555.555')
b.mult(3, 0)              # => 0.1666666665e7
b.mult(3, 3)              # => 0.167e7
b.mult(3, 6)              # => 0.166667e7
b.mult(3, 15)             # => 0.1666666665e7
b.mult(3.0, 0)            # => 0.1666666665e7
b.mult(Rational(3, 1), 0) # => 0.1666666665e7
b.mult(Complex(3, 0), 0)  # => (0.1666666665e7+0.0i)


2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
# File 'ext/bigdecimal/bigdecimal.c', line 2162

static VALUE
BigDecimal_mult2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = GetPrecisionInt(n);
    if (mx == 0) return BigDecimal_mult(self, b);
    else {
  size_t pl = VpSetPrecLimit(0);
  VALUE   c = BigDecimal_mult(self, b);
  VpSetPrecLimit(pl);
  GUARD_OBJ(cv, GetVpValue(c, 1));
  VpLeftRound(cv, VpGetRoundMode(), mx);
        return VpCheckGetValue(cv);
    }
}

#n_significant_digitsInteger

Returns the number of decimal significant digits in self.

BigDecimal("0").scale         # => 0
BigDecimal("1").scale         # => 1
BigDecimal("1.1").scale       # => 2
BigDecimal("3.1415").scale    # => 5
BigDecimal("-1e20").precision # => 1
BigDecimal("1e-20").precision # => 1
BigDecimal("Infinity").scale  # => 0
BigDecimal("-Infinity").scale # => 0
BigDecimal("NaN").scale       # => 0

Returns:



499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
# File 'ext/bigdecimal/bigdecimal.c', line 499

static VALUE
BigDecimal_n_significant_digits(VALUE self)
{
    ENTER(1);

    Real *p;
    GUARD_OBJ(p, GetVpValue(self, 1));
    if (VpIsZero(p) || !VpIsDef(p)) {
        return INT2FIX(0);
    }

    ssize_t n = p->Prec;  /* The length of frac without trailing zeros. */
    for (n = p->Prec; n > 0 && p->frac[n-1] == 0; --n);
    if (n == 0) return INT2FIX(0);

    DECDIG x;
    int nlz = BASE_FIG;
    for (x = p->frac[0]; x > 0; x /= 10) --nlz;

    int ntz = 0;
    for (x = p->frac[n-1]; x > 0 && x % 10 == 0; x /= 10) ++ntz;

    ssize_t n_significant_digits = BASE_FIG*n - nlz - ntz;
    return SSIZET2NUM(n_significant_digits);
}

#nan?Boolean

Returns True if the value is Not a Number.

Returns:

  • (Boolean)


1013
1014
1015
1016
1017
1018
1019
# File 'ext/bigdecimal/bigdecimal.c', line 1013

static VALUE
BigDecimal_IsNaN(VALUE self)
{
    Real *p = GetVpValue(self, 1);
    if (VpIsNaN(p))  return Qtrue;
    return Qfalse;
}

#nonzero?Boolean

Returns self if the value is non-zero, nil otherwise.

Returns:

  • (Boolean)


1452
1453
1454
1455
1456
1457
# File 'ext/bigdecimal/bigdecimal.c', line 1452

static VALUE
BigDecimal_nonzero(VALUE self)
{
    Real *a = GetVpValue(self, 1);
    return VpIsZero(a) ? Qnil : self;
}

#power(*args) ⇒ Object

power(n) power(n, prec)

Returns the value raised to the power of n.

Note that n must be an Integer.

Also available as the operator **.



2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
# File 'ext/bigdecimal/bigdecimal.c', line 2794

static VALUE
BigDecimal_power(int argc, VALUE*argv, VALUE self)
{
    ENTER(5);
    VALUE vexp, prec;
    Real* exp = NULL;
    Real *x, *y;
    ssize_t mp, ma, n;
    SIGNED_VALUE int_exp;
    double d;

    rb_scan_args(argc, argv, "11", &vexp, &prec);

    GUARD_OBJ(x, GetVpValue(self, 1));
    n = NIL_P(prec) ? (ssize_t)(x->Prec*VpBaseFig()) : NUM2SSIZET(prec);

    if (VpIsNaN(x)) {
        y = VpCreateRbObject(n, "0", true);
  RB_GC_GUARD(y->obj);
  VpSetNaN(y);
        return VpCheckGetValue(y);
    }

  retry:
    switch (TYPE(vexp)) {
      case T_FIXNUM:
  break;

      case T_BIGNUM:
  break;

      case T_FLOAT:
  d = RFLOAT_VALUE(vexp);
  if (d == round(d)) {
      if (FIXABLE(d)) {
    vexp = LONG2FIX((long)d);
      }
      else {
    vexp = rb_dbl2big(d);
      }
      goto retry;
  }
        if (NIL_P(prec)) {
            n += BIGDECIMAL_DOUBLE_FIGURES;
        }
        exp = GetVpValueWithPrec(vexp, 0, 1);
  break;

      case T_RATIONAL:
  if (is_zero(rb_rational_num(vexp))) {
      if (is_positive(vexp)) {
    vexp = INT2FIX(0);
    goto retry;
      }
  }
  else if (is_one(rb_rational_den(vexp))) {
      vexp = rb_rational_num(vexp);
      goto retry;
  }
  exp = GetVpValueWithPrec(vexp, n, 1);
        if (NIL_P(prec)) {
            n += n;
        }
  break;

      case T_DATA:
  if (is_kind_of_BigDecimal(vexp)) {
      VALUE zero = INT2FIX(0);
      VALUE rounded = BigDecimal_round(1, &zero, vexp);
      if (RTEST(BigDecimal_eq(vexp, rounded))) {
    vexp = BigDecimal_to_i(vexp);
    goto retry;
      }
            if (NIL_P(prec)) {
                GUARD_OBJ(y, GetVpValue(vexp, 1));
                n += y->Prec*VpBaseFig();
            }
      exp = DATA_PTR(vexp);
      break;
  }
  /* fall through */
      default:
  rb_raise(rb_eTypeError,
     "wrong argument type %"PRIsVALUE" (expected scalar Numeric)",
     RB_OBJ_CLASSNAME(vexp));
    }

    if (VpIsZero(x)) {
  if (is_negative(vexp)) {
            y = VpCreateRbObject(n, "#0", true);
      RB_GC_GUARD(y->obj);
      if (BIGDECIMAL_NEGATIVE_P(x)) {
    if (is_integer(vexp)) {
        if (is_even(vexp)) {
      /* (-0) ** (-even_integer)  -> Infinity */
      VpSetPosInf(y);
        }
        else {
      /* (-0) ** (-odd_integer)  -> -Infinity */
      VpSetNegInf(y);
        }
    }
    else {
        /* (-0) ** (-non_integer)  -> Infinity */
        VpSetPosInf(y);
    }
      }
      else {
    /* (+0) ** (-num)  -> Infinity */
    VpSetPosInf(y);
      }
            return VpCheckGetValue(y);
  }
  else if (is_zero(vexp)) {
            return VpCheckGetValue(VpCreateRbObject(n, "1", true));
  }
  else {
            return VpCheckGetValue(VpCreateRbObject(n, "0", true));
  }
    }

    if (is_zero(vexp)) {
        return VpCheckGetValue(VpCreateRbObject(n, "1", true));
    }
    else if (is_one(vexp)) {
  return self;
    }

    if (VpIsInf(x)) {
  if (is_negative(vexp)) {
      if (BIGDECIMAL_NEGATIVE_P(x)) {
    if (is_integer(vexp)) {
        if (is_even(vexp)) {
      /* (-Infinity) ** (-even_integer) -> +0 */
                        return VpCheckGetValue(VpCreateRbObject(n, "0", true));
        }
        else {
      /* (-Infinity) ** (-odd_integer) -> -0 */
                        return VpCheckGetValue(VpCreateRbObject(n, "-0", true));
        }
    }
    else {
        /* (-Infinity) ** (-non_integer) -> -0 */
                    return VpCheckGetValue(VpCreateRbObject(n, "-0", true));
    }
      }
      else {
                return VpCheckGetValue(VpCreateRbObject(n, "0", true));
      }
  }
  else {
            y = VpCreateRbObject(n, "0", true);
      if (BIGDECIMAL_NEGATIVE_P(x)) {
    if (is_integer(vexp)) {
        if (is_even(vexp)) {
      VpSetPosInf(y);
        }
        else {
      VpSetNegInf(y);
        }
    }
    else {
        /* TODO: support complex */
        rb_raise(rb_eMathDomainError,
           "a non-integral exponent for a negative base");
    }
      }
      else {
    VpSetPosInf(y);
      }
            return VpCheckGetValue(y);
  }
    }

    if (exp != NULL) {
  return bigdecimal_power_by_bigdecimal(x, exp, n);
    }
    else if (RB_TYPE_P(vexp, T_BIGNUM)) {
  VALUE abs_value = BigDecimal_abs(self);
  if (is_one(abs_value)) {
            return VpCheckGetValue(VpCreateRbObject(n, "1", true));
  }
  else if (RTEST(rb_funcall(abs_value, '<', 1, INT2FIX(1)))) {
      if (is_negative(vexp)) {
                y = VpCreateRbObject(n, "0", true);
    if (is_even(vexp)) {
        VpSetInf(y, VpGetSign(x));
    }
    else {
        VpSetInf(y, -VpGetSign(x));
    }
                return VpCheckGetValue(y);
      }
      else if (BIGDECIMAL_NEGATIVE_P(x) && is_even(vexp)) {
                return VpCheckGetValue(VpCreateRbObject(n, "-0", true));
      }
      else {
                return VpCheckGetValue(VpCreateRbObject(n, "0", true));
      }
  }
  else {
      if (is_positive(vexp)) {
                y = VpCreateRbObject(n, "0", true);
    if (is_even(vexp)) {
        VpSetInf(y, VpGetSign(x));
    }
    else {
        VpSetInf(y, -VpGetSign(x));
    }
                return VpCheckGetValue(y);
      }
      else if (BIGDECIMAL_NEGATIVE_P(x) && is_even(vexp)) {
                return VpCheckGetValue(VpCreateRbObject(n, "-0", true));
      }
      else {
                return VpCheckGetValue(VpCreateRbObject(n, "0", true));
      }
  }
    }

    int_exp = FIX2LONG(vexp);
    ma = int_exp;
    if (ma <  0) ma = -ma;
    if (ma == 0) ma = 1;

    if (VpIsDef(x)) {
  mp = x->Prec * (VpBaseFig() + 1);
        GUARD_OBJ(y, VpCreateRbObject(mp * (ma + 1), "0", true));
    }
    else {
        GUARD_OBJ(y, VpCreateRbObject(1, "0", true));
    }
    VpPowerByInt(y, x, int_exp);
    if (!NIL_P(prec) && VpIsDef(y)) {
  VpMidRound(y, VpGetRoundMode(), n);
    }
    return VpCheckGetValue(y);
}

#precisionInteger

Returns the number of decimal digits in self:

BigDecimal("0").precision         # => 0
BigDecimal("1").precision         # => 1
BigDecimal("1.1").precision       # => 2
BigDecimal("3.1415").precision    # => 5
BigDecimal("-1e20").precision     # => 21
BigDecimal("1e-20").precision     # => 20
BigDecimal("Infinity").precision  # => 0
BigDecimal("-Infinity").precision # => 0
BigDecimal("NaN").precision       # => 0

Returns:



433
434
435
436
437
438
439
# File 'ext/bigdecimal/bigdecimal.c', line 433

static VALUE
BigDecimal_precision(VALUE self)
{
    ssize_t precision;
    BigDecimal_count_precision_and_scale(self, &precision, NULL);
    return SSIZET2NUM(precision);
}

#precision_scaleArray

Returns a 2-length array; the first item is the result of BigDecimal#precision and the second one is of BigDecimal#scale.

See BigDecimal#precision. See BigDecimal#scale.

Returns:

  • (Array)


475
476
477
478
479
480
481
# File 'ext/bigdecimal/bigdecimal.c', line 475

static VALUE
BigDecimal_precision_scale(VALUE self)
{
    ssize_t precision, scale;
    BigDecimal_count_precision_and_scale(self, &precision, &scale);
    return rb_assoc_new(SSIZET2NUM(precision), SSIZET2NUM(scale));
}

#precsArray

Returns an Array of two Integer values that represent platform-dependent internal storage properties.

This method is deprecated and will be removed in the future. Instead, use BigDecimal#n_significant_digits for obtaining the number of significant digits in scientific notation, and BigDecimal#precision for obtaining the number of digits in decimal notation.

Returns:

  • (Array)


286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# File 'ext/bigdecimal/bigdecimal.c', line 286

static VALUE
BigDecimal_prec(VALUE self)
{
    ENTER(1);
    Real *p;
    VALUE obj;

    rb_category_warn(RB_WARN_CATEGORY_DEPRECATED,
                     "BigDecimal#precs is deprecated and will be removed in the future; "
                     "use BigDecimal#precision instead.");

    GUARD_OBJ(p, GetVpValue(self, 1));
    obj = rb_assoc_new(SIZET2NUM(p->Prec*VpBaseFig()),
           SIZET2NUM(p->MaxPrec*VpBaseFig()));
    return obj;
}

#quo(value) ⇒ Object #quo(value, digits) ⇒ Object

Divide by the specified value.

digits

If specified and less than the number of significant digits of the result, the result is rounded to the given number of digits, according to the rounding mode indicated by BigDecimal.mode.

If digits is 0 or omitted, the result is the same as for the / operator.

See BigDecimal#/. See BigDecimal#div.



1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
# File 'ext/bigdecimal/bigdecimal.c', line 1718

static VALUE
BigDecimal_quo(int argc, VALUE *argv, VALUE self)
{
    VALUE value, digits, result;
    SIGNED_VALUE n = -1;

    argc = rb_scan_args(argc, argv, "11", &value, &digits);
    if (argc > 1) {
        n = GetPrecisionInt(digits);
    }

    if (n > 0) {
        result = BigDecimal_div2(self, value, digits);
    }
    else {
        result = BigDecimal_div(self, value);
    }

    return result;
}

#remainderObject

remainder



1924
1925
1926
1927
1928
1929
1930
1931
1932
# File 'ext/bigdecimal/bigdecimal.c', line 1924

static VALUE
BigDecimal_remainder(VALUE self, VALUE r) /* remainder */
{
    VALUE  f;
    Real  *d, *rv = 0;
    f = BigDecimal_divremain(self, r, &d, &rv);
    if (!NIL_P(f)) return f;
    return VpCheckGetValue(rv);
}

#round(*args) ⇒ Object

round(n, mode)

Round to the nearest integer (by default), returning the result as a BigDecimal if n is specified, or as an Integer if it isn’t.

BigDecimal(‘3.14159’).round #=> 3 BigDecimal(‘8.7’).round #=> 9 BigDecimal(‘-9.9’).round #=> -10

BigDecimal(‘3.14159’).round(2).class.name #=> “BigDecimal” BigDecimal(‘3.14159’).round.class.name #=> “Integer”

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result, and return value will be an Integer.

BigDecimal(‘3.14159’).round(3) #=> 3.142 BigDecimal(‘13345.234’).round(-2) #=> 13300

The value of the optional mode argument can be used to determine how rounding is performed; see BigDecimal.mode.



2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
# File 'ext/bigdecimal/bigdecimal.c', line 2270

static VALUE
BigDecimal_round(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real   *c, *a;
    int    iLoc = 0;
    VALUE  vLoc;
    VALUE  vRound;
    int    round_to_int = 0;
    size_t mx, pl;

    unsigned short sw = VpGetRoundMode();

    switch (rb_scan_args(argc, argv, "02", &vLoc, &vRound)) {
      case 0:
  iLoc = 0;
        round_to_int = 1;
  break;
      case 1:
        if (RB_TYPE_P(vLoc, T_HASH)) {
      sw = check_rounding_mode_option(vLoc);
  }
  else {
      iLoc = NUM2INT(vLoc);
            if (iLoc < 1) round_to_int = 1;
  }
  break;
      case 2:
  iLoc = NUM2INT(vLoc);
  if (RB_TYPE_P(vRound, T_HASH)) {
      sw = check_rounding_mode_option(vRound);
  }
  else {
      sw = check_rounding_mode(vRound);
  }
  break;
      default:
  break;
    }

    pl = VpSetPrecLimit(0);
    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0", true));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, sw, iLoc);
    if (round_to_int) {
        return BigDecimal_to_i(VpCheckGetValue(c));
    }
    return VpCheckGetValue(c);
}

#scaleInteger

Returns the number of decimal digits following the decimal digits in self.

BigDecimal("0").scale         # => 0
BigDecimal("1").scale         # => 1
BigDecimal("1.1").scale       # => 1
BigDecimal("3.1415").scale    # => 4
BigDecimal("-1e20").precision # => 0
BigDecimal("1e-20").precision # => 20
BigDecimal("Infinity").scale  # => 0
BigDecimal("-Infinity").scale # => 0
BigDecimal("NaN").scale       # => 0

Returns:



457
458
459
460
461
462
463
# File 'ext/bigdecimal/bigdecimal.c', line 457

static VALUE
BigDecimal_scale(VALUE self)
{
    ssize_t scale;
    BigDecimal_count_precision_and_scale(self, NULL, &scale);
    return SSIZET2NUM(scale);
}

#signObject

Returns the sign of the value.

Returns a positive value if > 0, a negative value if < 0, and a zero if == 0.

The specific value returned indicates the type and sign of the BigDecimal, as follows:

BigDecimal::SIGN_NaN

value is Not a Number

BigDecimal::SIGN_POSITIVE_ZERO

value is +0

BigDecimal::SIGN_NEGATIVE_ZERO

value is -0

BigDecimal::SIGN_POSITIVE_INFINITE

value is +Infinity

BigDecimal::SIGN_NEGATIVE_INFINITE

value is -Infinity

BigDecimal::SIGN_POSITIVE_FINITE

value is positive

BigDecimal::SIGN_NEGATIVE_FINITE

value is negative



3623
3624
3625
3626
3627
3628
# File 'ext/bigdecimal/bigdecimal.c', line 3623

static VALUE
BigDecimal_sign(VALUE self)
{ /* sign */
    int s = GetVpValue(self, 1)->sign;
    return INT2FIX(s);
}

#splitObject

Splits a BigDecimal number into four parts, returned as an array of values.

The first value represents the sign of the BigDecimal, and is -1 or 1, or 0 if the BigDecimal is Not a Number.

The second value is a string representing the significant digits of the BigDecimal, with no leading zeros.

The third value is the base used for arithmetic (currently always 10) as an Integer.

The fourth value is an Integer exponent.

If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the string of significant digits with no leading zeros, and n is the exponent.

From these values, you can translate a BigDecimal to a float as follows:

sign, significant_digits, base, exponent = a.split
f = sign * "0.#{significant_digits}".to_f * (base ** exponent)

(Note that the to_f method is provided as a more convenient way to translate a BigDecimal to a Float.)



2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
# File 'ext/bigdecimal/bigdecimal.c', line 2602

static VALUE
BigDecimal_split(VALUE self)
{
    ENTER(5);
    Real *vp;
    VALUE obj,str;
    ssize_t e, s;
    char *psz1;

    GUARD_OBJ(vp, GetVpValue(self, 1));
    str = rb_str_new(0, VpNumOfChars(vp, "E"));
    psz1 = RSTRING_PTR(str);
    VpSzMantissa(vp, psz1);
    s = 1;
    if(psz1[0] == '-') {
  size_t len = strlen(psz1 + 1);

  memmove(psz1, psz1 + 1, len);
  psz1[len] = '\0';
        s = -1;
    }
    if (psz1[0] == 'N') s = 0; /* NaN */
    e = VpExponent10(vp);
    obj = rb_ary_new2(4);
    rb_ary_push(obj, INT2FIX(s));
    rb_ary_push(obj, str);
    rb_str_resize(str, strlen(psz1));
    rb_ary_push(obj, INT2FIX(10));
    rb_ary_push(obj, SSIZET2NUM(e));
    return obj;
}

#sqrt(nFig) ⇒ Object

sqrt(n)

Returns the square root of the value.

Result has at least n significant digits.



2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
# File 'ext/bigdecimal/bigdecimal.c', line 2212

static VALUE
BigDecimal_sqrt(VALUE self, VALUE nFig)
{
    ENTER(5);
    Real *c, *a;
    size_t mx, n;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);

    n = GetPrecisionInt(nFig) + VpDblFig() + BASE_FIG;
    if (mx <= n) mx = n;
    GUARD_OBJ(c, VpCreateRbObject(mx, "0", true));
    VpSqrt(c, a);
    return VpCheckGetValue(c);
}

#sub(b, n) ⇒ Object

sub(value, digits) -> bigdecimal

Subtract the specified value.

e.g.

c = a.sub(b,n)
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.



2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
# File 'ext/bigdecimal/bigdecimal.c', line 2119

static VALUE
BigDecimal_sub2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = GetPrecisionInt(n);
    if (mx == 0) return BigDecimal_sub(self, b);
    else {
  size_t pl = VpSetPrecLimit(0);
  VALUE   c = BigDecimal_sub(self, b);
  VpSetPrecLimit(pl);
  GUARD_OBJ(cv, GetVpValue(c, 1));
  VpLeftRound(cv, VpGetRoundMode(), mx);
        return VpCheckGetValue(cv);
    }
}

#to_dObject

call-seq:

a.to_d -> bigdecimal

Returns self.

require 'bigdecimal/util'

d = BigDecimal("3.14")
d.to_d                       # => 0.314e1


106
107
108
# File 'lib/bigdecimal/util.rb', line 106

def to_d
  self
end

#to_digitsObject

call-seq:

a.to_digits -> string

Converts a BigDecimal to a String of the form “nnnnnn.mmm”. This method is deprecated; use BigDecimal#to_s(“F”) instead.

require 'bigdecimal/util'

d = BigDecimal("3.14")
d.to_digits                  # => "3.14"


86
87
88
89
90
91
92
93
94
# File 'lib/bigdecimal/util.rb', line 86

def to_digits
  if self.nan? || self.infinite? || self.zero?
    self.to_s
  else
    i       = self.to_i.to_s
    _,f,_,z = self.frac.split
    i + "." + ("0"*(-z)) + f
  end
end

#to_fObject

Returns a new Float object having approximately the same value as the BigDecimal number. Normal accuracy limits and built-in errors of binary Float arithmetic apply.



1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
# File 'ext/bigdecimal/bigdecimal.c', line 1102

static VALUE
BigDecimal_to_f(VALUE self)
{
    ENTER(1);
    Real *p;
    double d;
    SIGNED_VALUE e;
    char *buf;
    volatile VALUE str;

    GUARD_OBJ(p, GetVpValue(self, 1));
    if (VpVtoD(&d, &e, p) != 1)
  return rb_float_new(d);
    if (e > (SIGNED_VALUE)(DBL_MAX_10_EXP+BASE_FIG))
  goto overflow;
    if (e < (SIGNED_VALUE)(DBL_MIN_10_EXP-BASE_FIG))
  goto underflow;

    str = rb_str_new(0, VpNumOfChars(p, "E"));
    buf = RSTRING_PTR(str);
    VpToString(p, buf, 0, 0);
    errno = 0;
    d = strtod(buf, 0);
    if (errno == ERANGE) {
  if (d == 0.0) goto underflow;
  if (fabs(d) >= HUGE_VAL) goto overflow;
    }
    return rb_float_new(d);

overflow:
    VpException(VP_EXCEPTION_OVERFLOW, "BigDecimal to Float conversion", 0);
    if (BIGDECIMAL_NEGATIVE_P(p))
  return rb_float_new(VpGetDoubleNegInf());
    else
  return rb_float_new(VpGetDoublePosInf());

underflow:
    VpException(VP_EXCEPTION_UNDERFLOW, "BigDecimal to Float conversion", 0);
    if (BIGDECIMAL_NEGATIVE_P(p))
  return rb_float_new(-0.0);
    else
  return rb_float_new(0.0);
}

#to_iObject

Returns the value as an Integer.

If the BigDecimal is infinity or NaN, raises FloatDomainError.



1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
# File 'ext/bigdecimal/bigdecimal.c', line 1055

static VALUE
BigDecimal_to_i(VALUE self)
{
    ENTER(5);
    ssize_t e, nf;
    Real *p;

    GUARD_OBJ(p, GetVpValue(self, 1));
    BigDecimal_check_num(p);

    e = VpExponent10(p);
    if (e <= 0) return INT2FIX(0);
    nf = VpBaseFig();
    if (e <= nf) {
        return LONG2NUM((long)(VpGetSign(p) * (DECDIG_DBL_SIGNED)p->frac[0]));
    }
    else {
  VALUE a = BigDecimal_split(self);
  VALUE digits = RARRAY_AREF(a, 1);
  VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0);
  VALUE ret;
  ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits);

  if (BIGDECIMAL_NEGATIVE_P(p)) {
      numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
  }
  if (dpower < 0) {
      ret = rb_funcall(numerator, rb_intern("div"), 1,
            rb_funcall(INT2FIX(10), rb_intern("**"), 1,
           INT2FIX(-dpower)));
  }
  else {
      ret = rb_funcall(numerator, '*', 1,
           rb_funcall(INT2FIX(10), rb_intern("**"), 1,
          INT2FIX(dpower)));
  }
  if (RB_TYPE_P(ret, T_FLOAT)) {
      rb_raise(rb_eFloatDomainError, "Infinity");
  }
  return ret;
    }
}

#to_intObject

Returns the value as an Integer.

If the BigDecimal is infinity or NaN, raises FloatDomainError.



1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
# File 'ext/bigdecimal/bigdecimal.c', line 1055

static VALUE
BigDecimal_to_i(VALUE self)
{
    ENTER(5);
    ssize_t e, nf;
    Real *p;

    GUARD_OBJ(p, GetVpValue(self, 1));
    BigDecimal_check_num(p);

    e = VpExponent10(p);
    if (e <= 0) return INT2FIX(0);
    nf = VpBaseFig();
    if (e <= nf) {
        return LONG2NUM((long)(VpGetSign(p) * (DECDIG_DBL_SIGNED)p->frac[0]));
    }
    else {
  VALUE a = BigDecimal_split(self);
  VALUE digits = RARRAY_AREF(a, 1);
  VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0);
  VALUE ret;
  ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits);

  if (BIGDECIMAL_NEGATIVE_P(p)) {
      numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
  }
  if (dpower < 0) {
      ret = rb_funcall(numerator, rb_intern("div"), 1,
            rb_funcall(INT2FIX(10), rb_intern("**"), 1,
           INT2FIX(-dpower)));
  }
  else {
      ret = rb_funcall(numerator, '*', 1,
           rb_funcall(INT2FIX(10), rb_intern("**"), 1,
          INT2FIX(dpower)));
  }
  if (RB_TYPE_P(ret, T_FLOAT)) {
      rb_raise(rb_eFloatDomainError, "Infinity");
  }
  return ret;
    }
}

#to_rObject

Converts a BigDecimal to a Rational.



1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
# File 'ext/bigdecimal/bigdecimal.c', line 1149

static VALUE
BigDecimal_to_r(VALUE self)
{
    Real *p;
    ssize_t sign, power, denomi_power;
    VALUE a, digits, numerator;

    p = GetVpValue(self, 1);
    BigDecimal_check_num(p);

    sign = VpGetSign(p);
    power = VpExponent10(p);
    a = BigDecimal_split(self);
    digits = RARRAY_AREF(a, 1);
    denomi_power = power - RSTRING_LEN(digits);
    numerator = rb_funcall(digits, rb_intern("to_i"), 0);

    if (sign < 0) {
  numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
    }
    if (denomi_power < 0) {
  return rb_Rational(numerator,
         rb_funcall(INT2FIX(10), rb_intern("**"), 1,
              INT2FIX(-denomi_power)));
    }
    else {
  return rb_Rational1(rb_funcall(numerator, '*', 1,
               rb_funcall(INT2FIX(10), rb_intern("**"), 1,
              INT2FIX(denomi_power))));
    }
}

#to_s(*args) ⇒ Object

to_s(s)

Converts the value to a string.

The default format looks like 0.xxxxEnn.

The optional parameter s consists of either an integer; or an optional ‘+’ or ‘ ’, followed by an optional number, followed by an optional ‘E’ or ‘F’.

If there is a ‘+’ at the start of s, positive values are returned with a leading ‘+’.

A space at the start of s returns positive values with a leading space.

If s contains a number, a space is inserted after each group of that many fractional digits.

If s ends with an ‘E’, engineering notation (0.xxxxEnn) is used.

If s ends with an ‘F’, conventional floating point notation is used.

Examples:

BigDecimal('-123.45678901234567890').to_s('5F')
  #=> '-123.45678 90123 45678 9'

BigDecimal('123.45678901234567890').to_s('+8F')
  #=> '+123.45678901 23456789'

BigDecimal('123.45678901234567890').to_s(' F')
  #=> ' 123.4567890123456789'


2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
# File 'ext/bigdecimal/bigdecimal.c', line 2507

static VALUE
BigDecimal_to_s(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    int   fmt = 0;   /* 0: E format, 1: F format */
    int   fPlus = 0; /* 0: default, 1: set ' ' before digits, 2: set '+' before digits. */
    Real  *vp;
    volatile VALUE str;
    char  *psz;
    char   ch;
    size_t nc, mc = 0;
    SIGNED_VALUE m;
    VALUE  f;

    GUARD_OBJ(vp, GetVpValue(self, 1));

    if (rb_scan_args(argc, argv, "01", &f) == 1) {
  if (RB_TYPE_P(f, T_STRING)) {
      psz = StringValueCStr(f);
      if (*psz == ' ') {
    fPlus = 1;
    psz++;
      }
      else if (*psz == '+') {
    fPlus = 2;
    psz++;
      }
      while ((ch = *psz++) != 0) {
    if (ISSPACE(ch)) {
        continue;
    }
    if (!ISDIGIT(ch)) {
        if (ch == 'F' || ch == 'f') {
      fmt = 1; /* F format */
        }
        break;
    }
    mc = mc*10 + ch - '0';
      }
  }
  else {
      m = NUM2INT(f);
      if (m <= 0) {
    rb_raise(rb_eArgError, "argument must be positive");
      }
      mc = (size_t)m;
  }
    }
    if (fmt) {
  nc = VpNumOfChars(vp, "F");
    }
    else {
  nc = VpNumOfChars(vp, "E");
    }
    if (mc > 0) {
  nc += (nc + mc - 1) / mc + 1;
    }

    str = rb_usascii_str_new(0, nc);
    psz = RSTRING_PTR(str);

    if (fmt) {
  VpToFString(vp, psz, mc, fPlus);
    }
    else {
  VpToString (vp, psz, mc, fPlus);
    }
    rb_str_resize(str, strlen(psz));
    return str;
}

#truncate(*args) ⇒ Object

truncate(n)

Truncate to the nearest integer (by default), returning the result as a BigDecimal.

BigDecimal(‘3.14159’).truncate #=> 3 BigDecimal(‘8.7’).truncate #=> 8 BigDecimal(‘-9.9’).truncate #=> -9

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).truncate(3) #=> 3.141 BigDecimal(‘13345.234’).truncate(-2) #=> 13300.0



2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
# File 'ext/bigdecimal/bigdecimal.c', line 2341

static VALUE
BigDecimal_truncate(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);

    if (rb_scan_args(argc, argv, "01", &vLoc) == 0) {
  iLoc = 0;
    }
    else {
  iLoc = NUM2INT(vLoc);
    }

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0", true));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, VP_ROUND_DOWN, iLoc); /* 0: truncate */
    if (argc == 0) {
        return BigDecimal_to_i(VpCheckGetValue(c));
    }
    return VpCheckGetValue(c);
}

#zero?Boolean

Returns True if the value is zero.

Returns:

  • (Boolean)


1444
1445
1446
1447
1448
1449
# File 'ext/bigdecimal/bigdecimal.c', line 1444

static VALUE
BigDecimal_zero(VALUE self)
{
    Real *a = GetVpValue(self, 1);
    return VpIsZero(a) ? Qtrue : Qfalse;
}