Class: BigDecimal

Inherits:
Numeric
  • Object
show all
Defined in:
ext/bigdecimal/bigdecimal.c,
lib/bigdecimal/util.rb,
ext/bigdecimal/bigdecimal.c

Overview

BigDecimal provides arbitrary-precision floating point decimal arithmetic.

Introduction

Ruby provides built-in support for arbitrary precision integer arithmetic.

For example:

42**13 #=> 1265437718438866624512

BigDecimal provides similar support for very large or very accurate floating point numbers.

Decimal arithmetic is also useful for general calculation, because it provides the correct answers people expect–whereas normal binary floating point arithmetic often introduces subtle errors because of the conversion between base 10 and base 2.

For example, try:

sum = 0
10_000.times do
  sum = sum + 0.0001
end
print sum #=> 0.9999999999999062

and contrast with the output from:

require 'bigdecimal'

sum = BigDecimal("0")
10_000.times do
  sum = sum + BigDecimal("0.0001")
end
print sum #=> 0.1E1

Similarly:

(BigDecimal(“1.2”) - BigDecimal(“1.0”)) == BigDecimal(“0.2”) #=> true

(1.2 - 1.0) == 0.2 #=> false

Special features of accurate decimal arithmetic

Because BigDecimal is more accurate than normal binary floating point arithmetic, it requires some special values.

Infinity

BigDecimal sometimes needs to return infinity, for example if you divide a value by zero.

BigDecimal(“1.0”) / BigDecimal(“0.0”) #=> Infinity BigDecimal(“-1.0”) / BigDecimal(“0.0”) #=> -Infinity

You can represent infinite numbers to BigDecimal using the strings 'Infinity', '+Infinity' and '-Infinity' (case-sensitive)

Not a Number

When a computation results in an undefined value, the special value NaN (for ‘not a number’) is returned.

Example:

BigDecimal(“0.0”) / BigDecimal(“0.0”) #=> NaN

You can also create undefined values.

NaN is never considered to be the same as any other value, even NaN itself:

n = BigDecimal(‘NaN’) n == 0.0 #=> false n == n #=> false

Positive and negative zero

If a computation results in a value which is too small to be represented as a BigDecimal within the currently specified limits of precision, zero must be returned.

If the value which is too small to be represented is negative, a BigDecimal value of negative zero is returned.

BigDecimal(“1.0”) / BigDecimal(“-Infinity”) #=> -0.0

If the value is positive, a value of positive zero is returned.

BigDecimal(“1.0”) / BigDecimal(“Infinity”) #=> 0.0

(See BigDecimal.mode for how to specify limits of precision.)

Note that -0.0 and 0.0 are considered to be the same for the purposes of comparison.

Note also that in mathematics, there is no particular concept of negative or positive zero; true mathematical zero has no sign.

bigdecimal/util

When you require bigdecimal/util, the #to_d method will be available on BigDecimal and the native Integer, Float, Rational, and String classes:

require ‘bigdecimal/util’

42.to_d         # => 0.42e2
0.5.to_d        # => 0.5e0
(2/3r).to_d(3)  # => 0.667e0
"0.5".to_d      # => 0.5e0

License

Copyright © 2002 by Shigeo Kobayashi <[email protected]>.

BigDecimal is released under the Ruby and 2-clause BSD licenses. See LICENSE.txt for details.

Maintained by mrkn <[email protected]> and ruby-core members.

Documented by zzak <[email protected]>, mathew <[email protected]>, and many other contributors.

Constant Summary collapse

VERSION =

The version of bigdecimal library

rb_str_new2(RUBY_BIGDECIMAL_VERSION)
BASE =

Base value used in internal calculations. On a 32 bit system, BASE is 10000, indicating that calculation is done in groups of 4 digits. (If it were larger, BASE**2 wouldn’t fit in 32 bits, so you couldn’t guarantee that two groups could always be multiplied together without overflow.)

INT2FIX((SIGNED_VALUE)VpBaseVal())
EXCEPTION_ALL =

Determines whether overflow, underflow or zero divide result in an exception being thrown. See BigDecimal.mode.

0xff
EXCEPTION_NaN =

Determines what happens when the result of a computation is not a number (NaN). See BigDecimal.mode.

0x02
EXCEPTION_INFINITY =

Determines what happens when the result of a computation is infinity. See BigDecimal.mode.

0x01
EXCEPTION_UNDERFLOW =

Determines what happens when the result of a computation is an underflow (a result too small to be represented). See BigDecimal.mode.

0x04
EXCEPTION_OVERFLOW =

Determines what happens when the result of a computation is an overflow (a result too large to be represented). See BigDecimal.mode.

0x01
EXCEPTION_ZERODIVIDE =

Determines what happens when a division by zero is performed. See BigDecimal.mode.

0x10
ROUND_MODE =

Determines what happens when a result must be rounded in order to fit in the appropriate number of significant digits. See BigDecimal.mode.

0x100
ROUND_UP =

Indicates that values should be rounded away from zero. See BigDecimal.mode.

1
ROUND_DOWN =

Indicates that values should be rounded towards zero. See BigDecimal.mode.

2
ROUND_HALF_UP =

Indicates that digits >= 5 should be rounded up, others rounded down. See BigDecimal.mode.

3
ROUND_HALF_DOWN =

Indicates that digits >= 6 should be rounded up, others rounded down. See BigDecimal.mode.

4
ROUND_CEILING =

Round towards +Infinity. See BigDecimal.mode.

5
ROUND_FLOOR =

Round towards -Infinity. See BigDecimal.mode.

6
ROUND_HALF_EVEN =

Round towards the even neighbor. See BigDecimal.mode.

7
SIGN_NaN =

Indicates that a value is not a number. See BigDecimal.sign.

0
SIGN_POSITIVE_ZERO =

Indicates that a value is +0. See BigDecimal.sign.

1
SIGN_NEGATIVE_ZERO =

Indicates that a value is -0. See BigDecimal.sign.

-1
SIGN_POSITIVE_FINITE =

Indicates that a value is positive and finite. See BigDecimal.sign.

2
SIGN_NEGATIVE_FINITE =

Indicates that a value is negative and finite. See BigDecimal.sign.

-2
SIGN_POSITIVE_INFINITE =

Indicates that a value is positive and infinite. See BigDecimal.sign.

3
SIGN_NEGATIVE_INFINITE =

Indicates that a value is negative and infinite. See BigDecimal.sign.

-3
INFINITY =

Positive infinity value.

f_BigDecimal(1, &arg, rb_cBigDecimal)
NAN =

‘Not a Number’ value.

f_BigDecimal(1, &arg, rb_cBigDecimal)

Class Method Summary collapse

Instance Method Summary collapse

Class Method Details

._load(str) ⇒ Object

Internal method used to provide marshalling support. See the Marshal module.



533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
# File 'ext/bigdecimal/bigdecimal.c', line 533

static VALUE
BigDecimal_load(VALUE self, VALUE str)
{
    ENTER(2);
    Real *pv;
    unsigned char *pch;
    unsigned char ch;
    unsigned long m=0;

    pch = (unsigned char *)StringValueCStr(str);
    /* First get max prec */
    while((*pch) != (unsigned char)'\0' && (ch = *pch++) != (unsigned char)':') {
        if(!ISDIGIT(ch)) {
            rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string");
        }
        m = m*10 + (unsigned long)(ch-'0');
    }
    if (m > VpBaseFig()) m -= VpBaseFig();
    GUARD_OBJ(pv, VpNewRbClass(m, (char *)pch, self));
    m /= VpBaseFig();
    if (m && pv->MaxPrec > m) {
  pv->MaxPrec = m+1;
    }
    return ToValue(pv);
}

.double_figObject

BigDecimal.double_fig

The BigDecimal.double_fig class method returns the number of digits a Float number is allowed to have. The result depends upon the CPU and OS in use.



344
345
346
347
348
# File 'ext/bigdecimal/bigdecimal.c', line 344

static VALUE
BigDecimal_double_fig(VALUE self)
{
    return INT2FIX(VpDblFig());
}

.interpret_loosely(str) ⇒ Object



2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
# File 'ext/bigdecimal/bigdecimal.c', line 2887

static VALUE
BigDecimal_s_interpret_loosely(VALUE klass, VALUE str)
{
    ENTER(1);
    char const *c_str;
    Real *pv;

    c_str = StringValueCStr(str);
    GUARD_OBJ(pv, VpAlloc(0, c_str, 0, 1));
    pv->obj = TypedData_Wrap_Struct(klass, &BigDecimal_data_type, pv);
    RB_OBJ_FREEZE(pv->obj);
    return pv->obj;
}

.limit(*args) ⇒ Object

BigDecimal.limit(digits)

Limit the number of significant digits in newly created BigDecimal numbers to the specified value. Rounding is performed as necessary, as specified by BigDecimal.mode.

A limit of 0, the default, means no upper limit.

The limit specified by this method takes less priority over any limit specified to instance methods such as ceil, floor, truncate, or round.



2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
# File 'ext/bigdecimal/bigdecimal.c', line 2913

static VALUE
BigDecimal_limit(int argc, VALUE *argv, VALUE self)
{
    VALUE  nFig;
    VALUE  nCur = SIZET2NUM(VpGetPrecLimit());

    if (rb_scan_args(argc, argv, "01", &nFig) == 1) {
  int nf;
  if (NIL_P(nFig)) return nCur;
  nf = NUM2INT(nFig);
  if (nf < 0) {
      rb_raise(rb_eArgError, "argument must be positive");
  }
  VpSetPrecLimit(nf);
    }
    return nCur;
}

.mode(*args) ⇒ Object

BigDecimal.mode(mode, value)

Controls handling of arithmetic exceptions and rounding. If no value is supplied, the current value is returned.

Six values of the mode parameter control the handling of arithmetic exceptions:

BigDecimal::EXCEPTION_NaN BigDecimal::EXCEPTION_INFINITY BigDecimal::EXCEPTION_UNDERFLOW BigDecimal::EXCEPTION_OVERFLOW BigDecimal::EXCEPTION_ZERODIVIDE BigDecimal::EXCEPTION_ALL

For each mode parameter above, if the value set is false, computation continues after an arithmetic exception of the appropriate type. When computation continues, results are as follows:

EXCEPTION_NaN

NaN

EXCEPTION_INFINITY

+Infinity or -Infinity

EXCEPTION_UNDERFLOW

0

EXCEPTION_OVERFLOW

+Infinity or -Infinity

EXCEPTION_ZERODIVIDE

+Infinity or -Infinity

One value of the mode parameter controls the rounding of numeric values: BigDecimal::ROUND_MODE. The values it can take are:

ROUND_UP, :up

round away from zero

ROUND_DOWN, :down, :truncate

round towards zero (truncate)

ROUND_HALF_UP, :half_up, :default

round towards the nearest neighbor, unless both neighbors are equidistant, in which case round away from zero. (default)

ROUND_HALF_DOWN, :half_down

round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards zero.

ROUND_HALF_EVEN, :half_even, :banker

round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards the even neighbor (Banker’s rounding)

ROUND_CEILING, :ceiling, :ceil

round towards positive infinity (ceil)

ROUND_FLOOR, :floor

round towards negative infinity (floor)



681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
# File 'ext/bigdecimal/bigdecimal.c', line 681

static VALUE
BigDecimal_mode(int argc, VALUE *argv, VALUE self)
{
    VALUE which;
    VALUE val;
    unsigned long f,fo;

    rb_scan_args(argc, argv, "11", &which, &val);
    f = (unsigned long)NUM2INT(which);

    if (f & VP_EXCEPTION_ALL) {
  /* Exception mode setting */
  fo = VpGetException();
  if (val == Qnil) return INT2FIX(fo);
  if (val != Qfalse && val!=Qtrue) {
      rb_raise(rb_eArgError, "second argument must be true or false");
      return Qnil; /* Not reached */
  }
  if (f & VP_EXCEPTION_INFINITY) {
      VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_INFINITY) :
      (fo & (~VP_EXCEPTION_INFINITY))));
  }
  fo = VpGetException();
  if (f & VP_EXCEPTION_NaN) {
      VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_NaN) :
      (fo & (~VP_EXCEPTION_NaN))));
  }
  fo = VpGetException();
  if (f & VP_EXCEPTION_UNDERFLOW) {
      VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_UNDERFLOW) :
      (fo & (~VP_EXCEPTION_UNDERFLOW))));
  }
  fo = VpGetException();
  if(f & VP_EXCEPTION_ZERODIVIDE) {
      VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_ZERODIVIDE) :
      (fo & (~VP_EXCEPTION_ZERODIVIDE))));
  }
  fo = VpGetException();
  return INT2FIX(fo);
    }
    if (VP_ROUND_MODE == f) {
  /* Rounding mode setting */
  unsigned short sw;
  fo = VpGetRoundMode();
  if (NIL_P(val)) return INT2FIX(fo);
  sw = check_rounding_mode(val);
  fo = VpSetRoundMode(sw);
  return INT2FIX(fo);
    }
    rb_raise(rb_eTypeError, "first argument for BigDecimal.mode invalid");
    return Qnil;
}

.save_exception_mode { ... } ⇒ Object

Execute the provided block, but preserve the exception mode

BigDecimal.save_exception_mode do
  BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false)
  BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false)

  BigDecimal(BigDecimal('Infinity'))
  BigDecimal(BigDecimal('-Infinity'))
  BigDecimal(BigDecimal('NaN'))
end

For use with the BigDecimal::EXCEPTION_*

See BigDecimal.mode

Yields:



2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
# File 'ext/bigdecimal/bigdecimal.c', line 2972

static VALUE
BigDecimal_save_exception_mode(VALUE self)
{
    unsigned short const exception_mode = VpGetException();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetException(exception_mode);
    if (state) rb_jump_tag(state);
    return ret;
}

.save_limit { ... } ⇒ Object

Execute the provided block, but preserve the precision limit

BigDecimal.limit(100)
puts BigDecimal.limit
BigDecimal.save_limit do
    BigDecimal.limit(200)
    puts BigDecimal.limit
end
puts BigDecimal.limit

Yields:



3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
# File 'ext/bigdecimal/bigdecimal.c', line 3022

static VALUE
BigDecimal_save_limit(VALUE self)
{
    size_t const limit = VpGetPrecLimit();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetPrecLimit(limit);
    if (state) rb_jump_tag(state);
    return ret;
}

.save_rounding_mode { ... } ⇒ Object

Execute the provided block, but preserve the rounding mode

BigDecimal.save_rounding_mode do
  BigDecimal.mode(BigDecimal::ROUND_MODE, :up)
  puts BigDecimal.mode(BigDecimal::ROUND_MODE)
end

For use with the BigDecimal::ROUND_*

See BigDecimal.mode

Yields:



2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
# File 'ext/bigdecimal/bigdecimal.c', line 2997

static VALUE
BigDecimal_save_rounding_mode(VALUE self)
{
    unsigned short const round_mode = VpGetRoundMode();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetRoundMode(round_mode);
    if (state) rb_jump_tag(state);
    return ret;
}

Instance Method Details

#%Object

%: a%b = a - (a.to_f/b).floor * b



1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
# File 'ext/bigdecimal/bigdecimal.c', line 1552

static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
    ENTER(3);
    Real *div = NULL, *mod = NULL;

    if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
  SAVE(div); SAVE(mod);
  return ToValue(mod);
    }
    return DoSomeOne(self, r, '%');
}

#*(r) ⇒ Object

call-seq: mult(value, digits)

Multiply by the specified value.

e.g.

c = a.mult(b,n)
c = a * b
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.



1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
# File 'ext/bigdecimal/bigdecimal.c', line 1371

static VALUE
BigDecimal_mult(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    if (RB_TYPE_P(r, T_FLOAT)) {
        b = GetVpValueWithPrec(r, DBLE_FIG, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
  b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
  b = GetVpValue(r,0);
    }

    if (!b) return DoSomeOne(self, r, '*');
    SAVE(b);

    mx = a->Prec + b->Prec;
    GUARD_OBJ(c, VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
    VpMult(c, a, b);
    return ToValue(c);
}

#**(n) ⇒ Object

Returns the value raised to the power of n.

See BigDecimal#power.



2671
2672
2673
2674
2675
# File 'ext/bigdecimal/bigdecimal.c', line 2671

static VALUE
BigDecimal_power_op(VALUE self, VALUE exp)
{
    return BigDecimal_power(1, &exp, self);
}

#+(r) ⇒ Object

call-seq: add(value, digits)

Add the specified value.

e.g.

c = a.add(b,n)
c = a + b
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.



1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
# File 'ext/bigdecimal/bigdecimal.c', line 1050

static VALUE
BigDecimal_add(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    if (RB_TYPE_P(r, T_FLOAT)) {
  b = GetVpValueWithPrec(r, DBLE_FIG, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
  b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
  b = GetVpValue(r, 0);
    }

    if (!b) return DoSomeOne(self,r,'+');
    SAVE(b);

    if (VpIsNaN(b)) return b->obj;
    if (VpIsNaN(a)) return a->obj;

    mx = GetAddSubPrec(a, b);
    if (mx == (size_t)-1L) {
  GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
  VpAddSub(c, a, b, 1);
    }
    else {
  GUARD_OBJ(c, VpCreateRbObject(mx * (VpBaseFig() + 1), "0"));
  if(!mx) {
      VpSetInf(c, VpGetSign(a));
  }
  else {
      VpAddSub(c, a, b, 1);
  }
    }
    return ToValue(c);
}

#+Object

Return self.

+BigDecimal('5')  #=> 0.5e1


1027
1028
1029
1030
1031
# File 'ext/bigdecimal/bigdecimal.c', line 1027

static VALUE
BigDecimal_uplus(VALUE self)
{
    return self;
}

#-(r) ⇒ Object

a - b -> bigdecimal

Subtract the specified value.

e.g.

c = a - b

The precision of the result value depends on the type of b.

If b is a Float, the precision of the result is Float::DIG+1.

If b is a BigDecimal, the precision of the result is b‘s precision of internal representation from platform. So, it’s return value is platform dependent.



1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
# File 'ext/bigdecimal/bigdecimal.c', line 1108

static VALUE
BigDecimal_sub(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self,1));
    if (RB_TYPE_P(r, T_FLOAT)) {
  b = GetVpValueWithPrec(r, DBLE_FIG, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
  b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
  b = GetVpValue(r,0);
    }

    if (!b) return DoSomeOne(self,r,'-');
    SAVE(b);

    if (VpIsNaN(b)) return b->obj;
    if (VpIsNaN(a)) return a->obj;

    mx = GetAddSubPrec(a,b);
    if (mx == (size_t)-1L) {
  GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
  VpAddSub(c, a, b, -1);
    }
    else {
  GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
  if (!mx) {
      VpSetInf(c,VpGetSign(a));
  }
  else {
      VpAddSub(c, a, b, -1);
  }
    }
    return ToValue(c);
}

#-Object

Return the negation of self.

-BigDecimal('5')  #=> -0.5e1


1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
# File 'ext/bigdecimal/bigdecimal.c', line 1345

static VALUE
BigDecimal_neg(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    GUARD_OBJ(a, GetVpValue(self, 1));
    GUARD_OBJ(c, VpCreateRbObject(a->Prec *(VpBaseFig() + 1), "0"));
    VpAsgn(c, a, -1);
    return ToValue(c);
}

#/Object

For c = self/r: with round operation



1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
# File 'ext/bigdecimal/bigdecimal.c', line 1440

static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
    ENTER(5);
    Real *c=NULL, *res=NULL, *div = NULL;
    r = BigDecimal_divide(&c, &res, &div, self, r);
    if (!NIL_P(r)) return r; /* coerced by other */
    SAVE(c); SAVE(res); SAVE(div);
    /* a/b = c + r/b */
    /* c xxxxx
       r 00000yyyyy  ==> (y/b)*BASE >= HALF_BASE
     */
    /* Round */
    if (VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */
  VpInternalRound(c, 0, c->frac[c->Prec-1], (BDIGIT)(VpBaseVal() * (BDIGIT_DBL)res->frac[0] / div->frac[0]));
    }
    return ToValue(c);
}

#<(r) ⇒ Object

a < b

Returns true if a is less than b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).



1291
1292
1293
1294
1295
# File 'ext/bigdecimal/bigdecimal.c', line 1291

static VALUE
BigDecimal_lt(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '<');
}

#<=(r) ⇒ Object

a <= b

Returns true if a is less than or equal to b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).



1304
1305
1306
1307
1308
# File 'ext/bigdecimal/bigdecimal.c', line 1304

static VALUE
BigDecimal_le(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, 'L');
}

#<=>(r) ⇒ Object

The comparison operator. a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.



1262
1263
1264
1265
1266
# File 'ext/bigdecimal/bigdecimal.c', line 1262

static VALUE
BigDecimal_comp(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '*');
}

#==(r) ⇒ Object

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

BigDecimal('1.0') == 1.0  #=> true


1278
1279
1280
1281
1282
# File 'ext/bigdecimal/bigdecimal.c', line 1278

static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}

#===(r) ⇒ Object

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

BigDecimal('1.0') == 1.0  #=> true


1278
1279
1280
1281
1282
# File 'ext/bigdecimal/bigdecimal.c', line 1278

static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}

#>(r) ⇒ Object

a > b

Returns true if a is greater than b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).



1317
1318
1319
1320
1321
# File 'ext/bigdecimal/bigdecimal.c', line 1317

static VALUE
BigDecimal_gt(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '>');
}

#>=(r) ⇒ Object

a >= b

Returns true if a is greater than or equal to b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce)



1330
1331
1332
1333
1334
# File 'ext/bigdecimal/bigdecimal.c', line 1330

static VALUE
BigDecimal_ge(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, 'G');
}

#_dumpObject

Method used to provide marshalling support.

inf = BigDecimal('Infinity')
  #=> Infinity
BigDecimal._load(inf._dump)
  #=> Infinity

See the Marshal module.



511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
# File 'ext/bigdecimal/bigdecimal.c', line 511

static VALUE
BigDecimal_dump(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *vp;
    char *psz;
    VALUE dummy;
    volatile VALUE dump;

    rb_scan_args(argc, argv, "01", &dummy);
    GUARD_OBJ(vp,GetVpValue(self, 1));
    dump = rb_str_new(0, VpNumOfChars(vp, "E")+50);
    psz = RSTRING_PTR(dump);
    sprintf(psz, "%"PRIuSIZE":", VpMaxPrec(vp)*VpBaseFig());
    VpToString(vp, psz+strlen(psz), 0, 0);
    rb_str_resize(dump, strlen(psz));
    return dump;
}

#absObject

Returns the absolute value, as a BigDecimal.

BigDecimal('5').abs  #=> 0.5e1
BigDecimal('-3').abs #=> 0.3e1


1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
# File 'ext/bigdecimal/bigdecimal.c', line 1821

static VALUE
BigDecimal_abs(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec *(VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpAsgn(c, a, 1);
    VpChangeSign(c, 1);
    return ToValue(c);
}

#add(b, n) ⇒ Object

call-seq: add(value, digits)

Add the specified value.

e.g.

c = a.add(b,n)
c = a + b
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.



1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
# File 'ext/bigdecimal/bigdecimal.c', line 1746

static VALUE
BigDecimal_add2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = GetPrecisionInt(n);
    if (mx == 0) return BigDecimal_add(self, b);
    else {
  size_t pl = VpSetPrecLimit(0);
  VALUE   c = BigDecimal_add(self, b);
  VpSetPrecLimit(pl);
  GUARD_OBJ(cv, GetVpValue(c, 1));
  VpLeftRound(cv, VpGetRoundMode(), mx);
  return ToValue(cv);
    }
}

#ceil(*args) ⇒ Object

ceil(n)

Return the smallest integer greater than or equal to the value, as a BigDecimal.

BigDecimal(‘3.14159’).ceil #=> 4 BigDecimal(‘-9.1’).ceil #=> -9

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).ceil(3) #=> 3.142 BigDecimal(‘13345.234’).ceil(-2) #=> 13400.0



2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
# File 'ext/bigdecimal/bigdecimal.c', line 2079

static VALUE
BigDecimal_ceil(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);

    if (rb_scan_args(argc, argv, "01", &vLoc) == 0) {
  iLoc = 0;
    } else {
  iLoc = NUM2INT(vLoc);
    }

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, VP_ROUND_CEIL, iLoc);
    if (argc == 0) {
  return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}

#cloneObject



2693
2694
2695
2696
2697
# File 'ext/bigdecimal/bigdecimal.c', line 2693

static VALUE
BigDecimal_clone(VALUE self)
{
  return self;
}

#coerce(other) ⇒ Object

The coerce method provides support for Ruby type coercion. It is not enabled by default.

This means that binary operations like + * / or - can often be performed on a BigDecimal and an object of another type, if the other object can be coerced into a BigDecimal value.

e.g.

a = BigDecimal("1.0")
b = a / 2.0 #=> 0.5

Note that coercing a String to a BigDecimal is not supported by default; it requires a special compile-time option when building Ruby.



993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
# File 'ext/bigdecimal/bigdecimal.c', line 993

static VALUE
BigDecimal_coerce(VALUE self, VALUE other)
{
    ENTER(2);
    VALUE obj;
    Real *b;

    if (RB_TYPE_P(other, T_FLOAT)) {
  GUARD_OBJ(b, GetVpValueWithPrec(other, DBLE_FIG, 1));
  obj = rb_assoc_new(ToValue(b), self);
    }
    else {
  if (RB_TYPE_P(other, T_RATIONAL)) {
      Real* pv = DATA_PTR(self);
      GUARD_OBJ(b, GetVpValueWithPrec(other, pv->Prec*VpBaseFig(), 1));
  }
  else {
      GUARD_OBJ(b, GetVpValue(other, 1));
  }
  obj = rb_assoc_new(b->obj, self);
    }

    return obj;
}

#div(*args) ⇒ Object

call-seq:

div(value, digits)  -> bigdecimal or integer

Divide by the specified value.

digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.

If digits is 0, the result is the same as for the / operator or #quo.

If digits is not specified, the result is an integer, by analogy with Float#div; see also BigDecimal#divmod.

Examples:

a = BigDecimal("4")
b = BigDecimal("3")

a.div(b, 3)  # => 0.133e1

a.div(b, 0)  # => 0.1333333333333333333e1
a / b        # => 0.1333333333333333333e1
a.quo(b)     # => 0.1333333333333333333e1

a.div(b)     # => 1


1736
1737
1738
1739
1740
1741
1742
1743
1744
# File 'ext/bigdecimal/bigdecimal.c', line 1736

static VALUE
BigDecimal_div3(int argc, VALUE *argv, VALUE self)
{
    VALUE b,n;

    rb_scan_args(argc, argv, "11", &b, &n);

    return BigDecimal_div2(self, b, n);
}

#divmod(r) ⇒ Object

divmod(value)

Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers. The quotient is rounded towards negative infinity.

For example:

require 'bigdecimal'

a = BigDecimal("42")
b = BigDecimal("9")

q, m = a.divmod(b)

c = q * b + m

a == c  #=> true

The quotient q is (a/b).floor, and the modulus is the amount that must be added to q * b to get a.



1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
# File 'ext/bigdecimal/bigdecimal.c', line 1650

static VALUE
BigDecimal_divmod(VALUE self, VALUE r)
{
    ENTER(5);
    Real *div = NULL, *mod = NULL;

    if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
  SAVE(div); SAVE(mod);
  return rb_assoc_new(ToValue(div), ToValue(mod));
    }
    return DoSomeOne(self,r,rb_intern("divmod"));
}

#dupObject



2693
2694
2695
2696
2697
# File 'ext/bigdecimal/bigdecimal.c', line 2693

static VALUE
BigDecimal_clone(VALUE self)
{
  return self;
}

#eql?(r) ⇒ Boolean

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

BigDecimal('1.0') == 1.0  #=> true

Returns:

  • (Boolean)


1278
1279
1280
1281
1282
# File 'ext/bigdecimal/bigdecimal.c', line 1278

static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}

#exponentObject

Returns the exponent of the BigDecimal number, as an Integer.

If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of digits with no leading zeros, then n is the exponent.



2270
2271
2272
2273
2274
2275
# File 'ext/bigdecimal/bigdecimal.c', line 2270

static VALUE
BigDecimal_exponent(VALUE self)
{
    ssize_t e = VpExponent10(GetVpValue(self, 1));
    return SSIZET2NUM(e);
}

#finite?Boolean

Returns True if the value is finite (not NaN or infinite).

Returns:

  • (Boolean)


824
825
826
827
828
829
830
831
# File 'ext/bigdecimal/bigdecimal.c', line 824

static VALUE
BigDecimal_IsFinite(VALUE self)
{
    Real *p = GetVpValue(self, 1);
    if (VpIsNaN(p)) return Qfalse;
    if (VpIsInf(p)) return Qfalse;
    return Qtrue;
}

#fixObject

Return the integer part of the number, as a BigDecimal.



1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
# File 'ext/bigdecimal/bigdecimal.c', line 1862

static VALUE
BigDecimal_fix(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec *(VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpActiveRound(c, a, VP_ROUND_DOWN, 0); /* 0: round off */
    return ToValue(c);
}

#floor(*args) ⇒ Object

floor(n)

Return the largest integer less than or equal to the value, as a BigDecimal.

BigDecimal(‘3.14159’).floor #=> 3 BigDecimal(‘-9.1’).floor #=> -10

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).floor(3) #=> 3.141 BigDecimal(‘13345.234’).floor(-2) #=> 13300.0



2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
# File 'ext/bigdecimal/bigdecimal.c', line 2032

static VALUE
BigDecimal_floor(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);

    if (rb_scan_args(argc, argv, "01", &vLoc)==0) {
  iLoc = 0;
    }
    else {
  iLoc = NUM2INT(vLoc);
    }

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, VP_ROUND_FLOOR, iLoc);
#ifdef BIGDECIMAL_DEBUG
    VPrint(stderr, "floor: c=%\n", c);
#endif
    if (argc == 0) {
  return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}

#fracObject

Return the fractional part of the number, as a BigDecimal.



2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
# File 'ext/bigdecimal/bigdecimal.c', line 2001

static VALUE
BigDecimal_frac(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpFrac(c, a);
    return ToValue(c);
}

#hashObject

Creates a hash for this BigDecimal.

Two BigDecimals with equal sign, fractional part and exponent have the same hash.



482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
# File 'ext/bigdecimal/bigdecimal.c', line 482

static VALUE
BigDecimal_hash(VALUE self)
{
    ENTER(1);
    Real *p;
    st_index_t hash;

    GUARD_OBJ(p, GetVpValue(self, 1));
    hash = (st_index_t)p->sign;
    /* hash!=2: the case for 0(1),NaN(0) or +-Infinity(3) is sign itself */
    if(hash == 2 || hash == (st_index_t)-2) {
  hash ^= rb_memhash(p->frac, sizeof(BDIGIT)*p->Prec);
  hash += p->exponent;
    }
    return ST2FIX(hash);
}

#infinite?Boolean

Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity.

Returns:

  • (Boolean)


814
815
816
817
818
819
820
821
# File 'ext/bigdecimal/bigdecimal.c', line 814

static VALUE
BigDecimal_IsInfinite(VALUE self)
{
    Real *p = GetVpValue(self, 1);
    if (VpIsPosInf(p)) return INT2FIX(1);
    if (VpIsNegInf(p)) return INT2FIX(-1);
    return Qnil;
}

#inspectObject

Returns a string representation of self.

BigDecimal("1234.5678").inspect
  #=> "0.12345678e4"


2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
# File 'ext/bigdecimal/bigdecimal.c', line 2282

static VALUE
BigDecimal_inspect(VALUE self)
{
    ENTER(5);
    Real *vp;
    volatile VALUE str;
    size_t nc;

    GUARD_OBJ(vp, GetVpValue(self, 1));
    nc = VpNumOfChars(vp, "E");

    str = rb_str_new(0, nc);
    VpToString(vp, RSTRING_PTR(str), 0, 0);
    rb_str_resize(str, strlen(RSTRING_PTR(str)));
    return str;
}

#moduloObject

%: a%b = a - (a.to_f/b).floor * b



1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
# File 'ext/bigdecimal/bigdecimal.c', line 1552

static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
    ENTER(3);
    Real *div = NULL, *mod = NULL;

    if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
  SAVE(div); SAVE(mod);
  return ToValue(mod);
    }
    return DoSomeOne(self, r, '%');
}

#mult(b, n) ⇒ Object

call-seq: mult(value, digits)

Multiply by the specified value.

e.g.

c = a.mult(b,n)
c = a * b
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.



1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
# File 'ext/bigdecimal/bigdecimal.c', line 1794

static VALUE
BigDecimal_mult2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = GetPrecisionInt(n);
    if (mx == 0) return BigDecimal_mult(self, b);
    else {
  size_t pl = VpSetPrecLimit(0);
  VALUE   c = BigDecimal_mult(self, b);
  VpSetPrecLimit(pl);
  GUARD_OBJ(cv, GetVpValue(c, 1));
  VpLeftRound(cv, VpGetRoundMode(), mx);
  return ToValue(cv);
    }
}

#n_significant_digitsObject



448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
# File 'ext/bigdecimal/bigdecimal.c', line 448

static VALUE
BigDecimal_n_significant_digits(VALUE self)
{
    ENTER(1);

    Real *p;
    GUARD_OBJ(p, GetVpValue(self, 1));

    ssize_t n = p->Prec;
    while (n > 0 && p->frac[n-1] == 0) --n;
    if (n <= 0) {
        return INT2FIX(0);
    }

    int nlz, ntz;

    BDIGIT x = p->frac[0];
    for (nlz = BASE_FIG; x > 0; x /= 10) --nlz;

    x = p->frac[n-1];
    for (ntz = 0; x > 0 && x % 10 == 0; x /= 10) ++ntz;

    ssize_t n_digits = BASE_FIG * n - nlz - ntz;
    return SSIZET2NUM(n_digits);
}

#nan?Boolean

Returns True if the value is Not a Number.

Returns:

  • (Boolean)


803
804
805
806
807
808
809
# File 'ext/bigdecimal/bigdecimal.c', line 803

static VALUE
BigDecimal_IsNaN(VALUE self)
{
    Real *p = GetVpValue(self, 1);
    if (VpIsNaN(p))  return Qtrue;
    return Qfalse;
}

#nonzero?Boolean

Returns self if the value is non-zero, nil otherwise.

Returns:

  • (Boolean)


1252
1253
1254
1255
1256
1257
# File 'ext/bigdecimal/bigdecimal.c', line 1252

static VALUE
BigDecimal_nonzero(VALUE self)
{
    Real *a = GetVpValue(self, 1);
    return VpIsZero(a) ? Qnil : self;
}

#power(*args) ⇒ Object

power(n) power(n, prec)

Returns the value raised to the power of n.

Note that n must be an Integer.

Also available as the operator **.



2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
# File 'ext/bigdecimal/bigdecimal.c', line 2425

static VALUE
BigDecimal_power(int argc, VALUE*argv, VALUE self)
{
    ENTER(5);
    VALUE vexp, prec;
    Real* exp = NULL;
    Real *x, *y;
    ssize_t mp, ma, n;
    SIGNED_VALUE int_exp;
    double d;

    rb_scan_args(argc, argv, "11", &vexp, &prec);

    GUARD_OBJ(x, GetVpValue(self, 1));
    n = NIL_P(prec) ? (ssize_t)(x->Prec*VpBaseFig()) : NUM2SSIZET(prec);

    if (VpIsNaN(x)) {
  y = VpCreateRbObject(n, "0");
  RB_GC_GUARD(y->obj);
  VpSetNaN(y);
  return ToValue(y);
    }

  retry:
    switch (TYPE(vexp)) {
      case T_FIXNUM:
  break;

      case T_BIGNUM:
  break;

      case T_FLOAT:
  d = RFLOAT_VALUE(vexp);
  if (d == round(d)) {
      if (FIXABLE(d)) {
    vexp = LONG2FIX((long)d);
      }
      else {
    vexp = rb_dbl2big(d);
      }
      goto retry;
  }
        if (NIL_P(prec)) {
            n += DBLE_FIG;
        }
        exp = GetVpValueWithPrec(vexp, DBLE_FIG, 1);
  break;

      case T_RATIONAL:
  if (is_zero(rb_rational_num(vexp))) {
      if (is_positive(vexp)) {
    vexp = INT2FIX(0);
    goto retry;
      }
  }
  else if (is_one(rb_rational_den(vexp))) {
      vexp = rb_rational_num(vexp);
      goto retry;
  }
  exp = GetVpValueWithPrec(vexp, n, 1);
        if (NIL_P(prec)) {
            n += n;
        }
  break;

      case T_DATA:
  if (is_kind_of_BigDecimal(vexp)) {
      VALUE zero = INT2FIX(0);
      VALUE rounded = BigDecimal_round(1, &zero, vexp);
      if (RTEST(BigDecimal_eq(vexp, rounded))) {
    vexp = BigDecimal_to_i(vexp);
    goto retry;
      }
            if (NIL_P(prec)) {
                GUARD_OBJ(y, GetVpValue(vexp, 1));
                n += y->Prec*VpBaseFig();
            }
      exp = DATA_PTR(vexp);
      break;
  }
  /* fall through */
      default:
  rb_raise(rb_eTypeError,
     "wrong argument type %"PRIsVALUE" (expected scalar Numeric)",
     RB_OBJ_CLASSNAME(vexp));
    }

    if (VpIsZero(x)) {
  if (is_negative(vexp)) {
      y = VpCreateRbObject(n, "#0");
      RB_GC_GUARD(y->obj);
      if (BIGDECIMAL_NEGATIVE_P(x)) {
    if (is_integer(vexp)) {
        if (is_even(vexp)) {
      /* (-0) ** (-even_integer)  -> Infinity */
      VpSetPosInf(y);
        }
        else {
      /* (-0) ** (-odd_integer)  -> -Infinity */
      VpSetNegInf(y);
        }
    }
    else {
        /* (-0) ** (-non_integer)  -> Infinity */
        VpSetPosInf(y);
    }
      }
      else {
    /* (+0) ** (-num)  -> Infinity */
    VpSetPosInf(y);
      }
      return ToValue(y);
  }
  else if (is_zero(vexp)) {
      return ToValue(VpCreateRbObject(n, "1"));
  }
  else {
      return ToValue(VpCreateRbObject(n, "0"));
  }
    }

    if (is_zero(vexp)) {
  return ToValue(VpCreateRbObject(n, "1"));
    }
    else if (is_one(vexp)) {
  return self;
    }

    if (VpIsInf(x)) {
  if (is_negative(vexp)) {
      if (BIGDECIMAL_NEGATIVE_P(x)) {
    if (is_integer(vexp)) {
        if (is_even(vexp)) {
      /* (-Infinity) ** (-even_integer) -> +0 */
      return ToValue(VpCreateRbObject(n, "0"));
        }
        else {
      /* (-Infinity) ** (-odd_integer) -> -0 */
      return ToValue(VpCreateRbObject(n, "-0"));
        }
    }
    else {
        /* (-Infinity) ** (-non_integer) -> -0 */
        return ToValue(VpCreateRbObject(n, "-0"));
    }
      }
      else {
    return ToValue(VpCreateRbObject(n, "0"));
      }
  }
  else {
      y = VpCreateRbObject(n, "0");
      if (BIGDECIMAL_NEGATIVE_P(x)) {
    if (is_integer(vexp)) {
        if (is_even(vexp)) {
      VpSetPosInf(y);
        }
        else {
      VpSetNegInf(y);
        }
    }
    else {
        /* TODO: support complex */
        rb_raise(rb_eMathDomainError,
           "a non-integral exponent for a negative base");
    }
      }
      else {
    VpSetPosInf(y);
      }
      return ToValue(y);
  }
    }

    if (exp != NULL) {
  return rmpd_power_by_big_decimal(x, exp, n);
    }
    else if (RB_TYPE_P(vexp, T_BIGNUM)) {
  VALUE abs_value = BigDecimal_abs(self);
  if (is_one(abs_value)) {
      return ToValue(VpCreateRbObject(n, "1"));
  }
  else if (RTEST(rb_funcall(abs_value, '<', 1, INT2FIX(1)))) {
      if (is_negative(vexp)) {
    y = VpCreateRbObject(n, "0");
    if (is_even(vexp)) {
        VpSetInf(y, VpGetSign(x));
    }
    else {
        VpSetInf(y, -VpGetSign(x));
    }
    return ToValue(y);
      }
      else if (BIGDECIMAL_NEGATIVE_P(x) && is_even(vexp)) {
    return ToValue(VpCreateRbObject(n, "-0"));
      }
      else {
    return ToValue(VpCreateRbObject(n, "0"));
      }
  }
  else {
      if (is_positive(vexp)) {
    y = VpCreateRbObject(n, "0");
    if (is_even(vexp)) {
        VpSetInf(y, VpGetSign(x));
    }
    else {
        VpSetInf(y, -VpGetSign(x));
    }
    return ToValue(y);
      }
      else if (BIGDECIMAL_NEGATIVE_P(x) && is_even(vexp)) {
    return ToValue(VpCreateRbObject(n, "-0"));
      }
      else {
    return ToValue(VpCreateRbObject(n, "0"));
      }
  }
    }

    int_exp = FIX2LONG(vexp);
    ma = int_exp;
    if (ma <  0) ma = -ma;
    if (ma == 0) ma = 1;

    if (VpIsDef(x)) {
  mp = x->Prec * (VpBaseFig() + 1);
  GUARD_OBJ(y, VpCreateRbObject(mp * (ma + 1), "0"));
    }
    else {
  GUARD_OBJ(y, VpCreateRbObject(1, "0"));
    }
    VpPower(y, x, int_exp);
    if (!NIL_P(prec) && VpIsDef(y)) {
  VpMidRound(y, VpGetRoundMode(), n);
    }
    return ToValue(y);
}

#precisionObject

Returns the number of decimal digits in this number.

Example:

BigDecimal("0").precision  # => 0
BigDecimal("1").precision  # => 1
BigDecimal("-1e20").precision  # => 21
BigDecimal("1e-20").precision  # => 20
BigDecimal("Infinity").precision  # => 0
BigDecimal("-Infinity").precision  # => 0
BigDecimal("NaN").precision  # => 0


397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# File 'ext/bigdecimal/bigdecimal.c', line 397

static VALUE
BigDecimal_precision(VALUE self)
{
    ENTER(1);

    Real *p;
    GUARD_OBJ(p, GetVpValue(self, 1));

    /*
     * The most significant digit is frac[0], and the least significant digit is frac[Prec-1].
     * When the exponent is zero, the decimal point is located just before frac[0].
     * When the exponent is negative, the decimal point moves to leftward.
     * Conversely, when the exponent is positive, the decimal point moves to rightward.
     *
     *    | frac[0] frac[1] frac[2] . frac[3] frac[4] ... frac[Prec-1]
     *    |------------------------> exponent == 3
     */

    ssize_t ex = p->exponent;
    ssize_t precision;
    if (ex < 0) {
        precision = (-ex + 1) * BASE_FIG;  /* 1 is for p->frac[0] */
        ex = 0;
    }
    else if (p->Prec > 0) {
        BDIGIT x = p->frac[0];
        for (precision = 0; x > 0; x /= 10) {
            ++precision;
        }
    }

    if (ex > (ssize_t)p->Prec) {
        precision += (ex - 1) * BASE_FIG;
    }
    else if (p->Prec > 0) {
        ssize_t n = (ssize_t)p->Prec - 1;
        while (n > 0 && p->frac[n] == 0) --n;

        precision += n * BASE_FIG;

        if (ex < (ssize_t)p->Prec) {
            BDIGIT x = p->frac[n];
            for (; x > 0 && x % 10 == 0; x /= 10) {
                --precision;
            }
        }
    }

    return SSIZET2NUM(precision);
}

#precsArray

Returns an Array of two Integer values that represent platform-dependent internal storage properties.

This method is deprecated and will be removed in the future. Instead, use BigDecimal#n_significant_digits for obtaining the number of significant digits in scientific notation, and BigDecimal#precision for obtaining the number of digits in decimal notation.

BigDecimal('5').precs #=> [9, 18]

Returns:

  • (Array)


364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
# File 'ext/bigdecimal/bigdecimal.c', line 364

static VALUE
BigDecimal_prec(VALUE self)
{
    ENTER(1);
    Real *p;
    VALUE obj;

    rb_category_warn(RB_WARN_CATEGORY_DEPRECATED,
                     "BigDecimal#precs is deprecated and will be removed in the future; "
                     "use BigDecimal#precision instead.");

    GUARD_OBJ(p, GetVpValue(self, 1));
    obj = rb_assoc_new(SIZET2NUM(p->Prec*VpBaseFig()),
           SIZET2NUM(p->MaxPrec*VpBaseFig()));
    return obj;
}

#quoObject

For c = self/r: with round operation



1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
# File 'ext/bigdecimal/bigdecimal.c', line 1440

static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
    ENTER(5);
    Real *c=NULL, *res=NULL, *div = NULL;
    r = BigDecimal_divide(&c, &res, &div, self, r);
    if (!NIL_P(r)) return r; /* coerced by other */
    SAVE(c); SAVE(res); SAVE(div);
    /* a/b = c + r/b */
    /* c xxxxx
       r 00000yyyyy  ==> (y/b)*BASE >= HALF_BASE
     */
    /* Round */
    if (VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */
  VpInternalRound(c, 0, c->frac[c->Prec-1], (BDIGIT)(VpBaseVal() * (BDIGIT_DBL)res->frac[0] / div->frac[0]));
    }
    return ToValue(c);
}

#remainderObject

remainder



1618
1619
1620
1621
1622
1623
1624
1625
1626
# File 'ext/bigdecimal/bigdecimal.c', line 1618

static VALUE
BigDecimal_remainder(VALUE self, VALUE r) /* remainder */
{
    VALUE  f;
    Real  *d, *rv = 0;
    f = BigDecimal_divremain(self, r, &d, &rv);
    if (!NIL_P(f)) return f;
    return ToValue(rv);
}

#round(*args) ⇒ Object

round(n, mode)

Round to the nearest integer (by default), returning the result as a BigDecimal if n is specified, or as an Integer if it isn’t.

BigDecimal(‘3.14159’).round #=> 3 BigDecimal(‘8.7’).round #=> 9 BigDecimal(‘-9.9’).round #=> -10

BigDecimal(‘3.14159’).round(2).class.name #=> “BigDecimal” BigDecimal(‘3.14159’).round.class.name #=> “Integer”

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result, and return value will be an Integer.

BigDecimal(‘3.14159’).round(3) #=> 3.142 BigDecimal(‘13345.234’).round(-2) #=> 13300

The value of the optional mode argument can be used to determine how rounding is performed; see BigDecimal.mode.



1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
# File 'ext/bigdecimal/bigdecimal.c', line 1901

static VALUE
BigDecimal_round(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real   *c, *a;
    int    iLoc = 0;
    VALUE  vLoc;
    VALUE  vRound;
    int    round_to_int = 0;
    size_t mx, pl;

    unsigned short sw = VpGetRoundMode();

    switch (rb_scan_args(argc, argv, "02", &vLoc, &vRound)) {
      case 0:
  iLoc = 0;
        round_to_int = 1;
  break;
      case 1:
        if (RB_TYPE_P(vLoc, T_HASH)) {
      sw = check_rounding_mode_option(vLoc);
  }
  else {
      iLoc = NUM2INT(vLoc);
            if (iLoc < 1) round_to_int = 1;
  }
  break;
      case 2:
  iLoc = NUM2INT(vLoc);
  if (RB_TYPE_P(vRound, T_HASH)) {
      sw = check_rounding_mode_option(vRound);
  }
  else {
      sw = check_rounding_mode(vRound);
  }
  break;
      default:
  break;
    }

    pl = VpSetPrecLimit(0);
    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, sw, iLoc);
    if (round_to_int) {
  return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}

#signObject

Returns the sign of the value.

Returns a positive value if > 0, a negative value if < 0, and a zero if == 0.

The specific value returned indicates the type and sign of the BigDecimal, as follows:

BigDecimal::SIGN_NaN

value is Not a Number

BigDecimal::SIGN_POSITIVE_ZERO

value is +0

BigDecimal::SIGN_NEGATIVE_ZERO

value is -0

BigDecimal::SIGN_POSITIVE_INFINITE

value is +Infinity

BigDecimal::SIGN_NEGATIVE_INFINITE

value is -Infinity

BigDecimal::SIGN_POSITIVE_FINITE

value is positive

BigDecimal::SIGN_NEGATIVE_FINITE

value is negative



2947
2948
2949
2950
2951
2952
# File 'ext/bigdecimal/bigdecimal.c', line 2947

static VALUE
BigDecimal_sign(VALUE self)
{ /* sign */
    int s = GetVpValue(self, 1)->sign;
    return INT2FIX(s);
}

#splitObject

Splits a BigDecimal number into four parts, returned as an array of values.

The first value represents the sign of the BigDecimal, and is -1 or 1, or 0 if the BigDecimal is Not a Number.

The second value is a string representing the significant digits of the BigDecimal, with no leading zeros.

The third value is the base used for arithmetic (currently always 10) as an Integer.

The fourth value is an Integer exponent.

If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the string of significant digits with no leading zeros, and n is the exponent.

From these values, you can translate a BigDecimal to a float as follows:

sign, significant_digits, base, exponent = a.split
f = sign * "0.#{significant_digits}".to_f * (base ** exponent)

(Note that the to_f method is provided as a more convenient way to translate a BigDecimal to a Float.)



2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
# File 'ext/bigdecimal/bigdecimal.c', line 2233

static VALUE
BigDecimal_split(VALUE self)
{
    ENTER(5);
    Real *vp;
    VALUE obj,str;
    ssize_t e, s;
    char *psz1;

    GUARD_OBJ(vp, GetVpValue(self, 1));
    str = rb_str_new(0, VpNumOfChars(vp, "E"));
    psz1 = RSTRING_PTR(str);
    VpSzMantissa(vp, psz1);
    s = 1;
    if(psz1[0] == '-') {
  size_t len = strlen(psz1 + 1);

  memmove(psz1, psz1 + 1, len);
  psz1[len] = '\0';
        s = -1;
    }
    if (psz1[0] == 'N') s = 0; /* NaN */
    e = VpExponent10(vp);
    obj = rb_ary_new2(4);
    rb_ary_push(obj, INT2FIX(s));
    rb_ary_push(obj, str);
    rb_str_resize(str, strlen(psz1));
    rb_ary_push(obj, INT2FIX(10));
    rb_ary_push(obj, SSIZET2NUM(e));
    return obj;
}

#sqrt(nFig) ⇒ Object

sqrt(n)

Returns the square root of the value.

Result has at least n significant digits.



1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
# File 'ext/bigdecimal/bigdecimal.c', line 1843

static VALUE
BigDecimal_sqrt(VALUE self, VALUE nFig)
{
    ENTER(5);
    Real *c, *a;
    size_t mx, n;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);

    n = GetPrecisionInt(nFig) + VpDblFig() + BASE_FIG;
    if (mx <= n) mx = n;
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSqrt(c, a);
    return ToValue(c);
}

#sub(b, n) ⇒ Object

sub(value, digits) -> bigdecimal

Subtract the specified value.

e.g.

c = a.sub(b,n)
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.



1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
# File 'ext/bigdecimal/bigdecimal.c', line 1776

static VALUE
BigDecimal_sub2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = GetPrecisionInt(n);
    if (mx == 0) return BigDecimal_sub(self, b);
    else {
  size_t pl = VpSetPrecLimit(0);
  VALUE   c = BigDecimal_sub(self, b);
  VpSetPrecLimit(pl);
  GUARD_OBJ(cv, GetVpValue(c, 1));
  VpLeftRound(cv, VpGetRoundMode(), mx);
  return ToValue(cv);
    }
}

#to_dObject

call-seq:

a.to_d -> bigdecimal

Returns self.

require 'bigdecimal/util'

d = BigDecimal("3.14")
d.to_d                       # => 0.314e1


106
107
108
# File 'lib/bigdecimal/util.rb', line 106

def to_d
  self
end

#to_digitsObject

call-seq:

a.to_digits -> string

Converts a BigDecimal to a String of the form “nnnnnn.mmm”. This method is deprecated; use BigDecimal#to_s(“F”) instead.

require 'bigdecimal/util'

d = BigDecimal("3.14")
d.to_digits                  # => "3.14"


86
87
88
89
90
91
92
93
94
# File 'lib/bigdecimal/util.rb', line 86

def to_digits
  if self.nan? || self.infinite? || self.zero?
    self.to_s
  else
    i       = self.to_i.to_s
    _,f,_,z = self.frac.split
    i + "." + ("0"*(-z)) + f
  end
end

#to_fObject

Returns a new Float object having approximately the same value as the BigDecimal number. Normal accuracy limits and built-in errors of binary Float arithmetic apply.



900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
# File 'ext/bigdecimal/bigdecimal.c', line 900

static VALUE
BigDecimal_to_f(VALUE self)
{
    ENTER(1);
    Real *p;
    double d;
    SIGNED_VALUE e;
    char *buf;
    volatile VALUE str;

    GUARD_OBJ(p, GetVpValue(self, 1));
    if (VpVtoD(&d, &e, p) != 1)
  return rb_float_new(d);
    if (e > (SIGNED_VALUE)(DBL_MAX_10_EXP+BASE_FIG))
  goto overflow;
    if (e < (SIGNED_VALUE)(DBL_MIN_10_EXP-BASE_FIG))
  goto underflow;

    str = rb_str_new(0, VpNumOfChars(p, "E"));
    buf = RSTRING_PTR(str);
    VpToString(p, buf, 0, 0);
    errno = 0;
    d = strtod(buf, 0);
    if (errno == ERANGE) {
  if (d == 0.0) goto underflow;
  if (fabs(d) >= HUGE_VAL) goto overflow;
    }
    return rb_float_new(d);

overflow:
    VpException(VP_EXCEPTION_OVERFLOW, "BigDecimal to Float conversion", 0);
    if (BIGDECIMAL_NEGATIVE_P(p))
  return rb_float_new(VpGetDoubleNegInf());
    else
  return rb_float_new(VpGetDoublePosInf());

underflow:
    VpException(VP_EXCEPTION_UNDERFLOW, "BigDecimal to Float conversion", 0);
    if (BIGDECIMAL_NEGATIVE_P(p))
  return rb_float_new(-0.0);
    else
  return rb_float_new(0.0);
}

#to_iObject

Returns the value as an Integer.

If the BigDecimal is infinity or NaN, raises FloatDomainError.



853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
# File 'ext/bigdecimal/bigdecimal.c', line 853

static VALUE
BigDecimal_to_i(VALUE self)
{
    ENTER(5);
    ssize_t e, nf;
    Real *p;

    GUARD_OBJ(p, GetVpValue(self, 1));
    BigDecimal_check_num(p);

    e = VpExponent10(p);
    if (e <= 0) return INT2FIX(0);
    nf = VpBaseFig();
    if (e <= nf) {
        return LONG2NUM((long)(VpGetSign(p) * (BDIGIT_DBL_SIGNED)p->frac[0]));
    }
    else {
  VALUE a = BigDecimal_split(self);
  VALUE digits = RARRAY_AREF(a, 1);
  VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0);
  VALUE ret;
  ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits);

  if (BIGDECIMAL_NEGATIVE_P(p)) {
      numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
  }
  if (dpower < 0) {
      ret = rb_funcall(numerator, rb_intern("div"), 1,
            rb_funcall(INT2FIX(10), rb_intern("**"), 1,
           INT2FIX(-dpower)));
  }
  else {
      ret = rb_funcall(numerator, '*', 1,
           rb_funcall(INT2FIX(10), rb_intern("**"), 1,
          INT2FIX(dpower)));
  }
  if (RB_TYPE_P(ret, T_FLOAT)) {
      rb_raise(rb_eFloatDomainError, "Infinity");
  }
  return ret;
    }
}

#to_intObject

Returns the value as an Integer.

If the BigDecimal is infinity or NaN, raises FloatDomainError.



853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
# File 'ext/bigdecimal/bigdecimal.c', line 853

static VALUE
BigDecimal_to_i(VALUE self)
{
    ENTER(5);
    ssize_t e, nf;
    Real *p;

    GUARD_OBJ(p, GetVpValue(self, 1));
    BigDecimal_check_num(p);

    e = VpExponent10(p);
    if (e <= 0) return INT2FIX(0);
    nf = VpBaseFig();
    if (e <= nf) {
        return LONG2NUM((long)(VpGetSign(p) * (BDIGIT_DBL_SIGNED)p->frac[0]));
    }
    else {
  VALUE a = BigDecimal_split(self);
  VALUE digits = RARRAY_AREF(a, 1);
  VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0);
  VALUE ret;
  ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits);

  if (BIGDECIMAL_NEGATIVE_P(p)) {
      numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
  }
  if (dpower < 0) {
      ret = rb_funcall(numerator, rb_intern("div"), 1,
            rb_funcall(INT2FIX(10), rb_intern("**"), 1,
           INT2FIX(-dpower)));
  }
  else {
      ret = rb_funcall(numerator, '*', 1,
           rb_funcall(INT2FIX(10), rb_intern("**"), 1,
          INT2FIX(dpower)));
  }
  if (RB_TYPE_P(ret, T_FLOAT)) {
      rb_raise(rb_eFloatDomainError, "Infinity");
  }
  return ret;
    }
}

#to_rObject

Converts a BigDecimal to a Rational.



947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
# File 'ext/bigdecimal/bigdecimal.c', line 947

static VALUE
BigDecimal_to_r(VALUE self)
{
    Real *p;
    ssize_t sign, power, denomi_power;
    VALUE a, digits, numerator;

    p = GetVpValue(self, 1);
    BigDecimal_check_num(p);

    sign = VpGetSign(p);
    power = VpExponent10(p);
    a = BigDecimal_split(self);
    digits = RARRAY_AREF(a, 1);
    denomi_power = power - RSTRING_LEN(digits);
    numerator = rb_funcall(digits, rb_intern("to_i"), 0);

    if (sign < 0) {
  numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
    }
    if (denomi_power < 0) {
  return rb_Rational(numerator,
         rb_funcall(INT2FIX(10), rb_intern("**"), 1,
              INT2FIX(-denomi_power)));
    }
    else {
  return rb_Rational1(rb_funcall(numerator, '*', 1,
               rb_funcall(INT2FIX(10), rb_intern("**"), 1,
              INT2FIX(denomi_power))));
    }
}

#to_s(*args) ⇒ Object

to_s(s)

Converts the value to a string.

The default format looks like 0.xxxxEnn.

The optional parameter s consists of either an integer; or an optional ‘+’ or ‘ ’, followed by an optional number, followed by an optional ‘E’ or ‘F’.

If there is a ‘+’ at the start of s, positive values are returned with a leading ‘+’.

A space at the start of s returns positive values with a leading space.

If s contains a number, a space is inserted after each group of that many fractional digits.

If s ends with an ‘E’, engineering notation (0.xxxxEnn) is used.

If s ends with an ‘F’, conventional floating point notation is used.

Examples:

BigDecimal('-123.45678901234567890').to_s('5F')
  #=> '-123.45678 90123 45678 9'

BigDecimal('123.45678901234567890').to_s('+8F')
  #=> '+123.45678901 23456789'

BigDecimal('123.45678901234567890').to_s(' F')
  #=> ' 123.4567890123456789'


2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
# File 'ext/bigdecimal/bigdecimal.c', line 2138

static VALUE
BigDecimal_to_s(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    int   fmt = 0;   /* 0: E format, 1: F format */
    int   fPlus = 0; /* 0: default, 1: set ' ' before digits, 2: set '+' before digits. */
    Real  *vp;
    volatile VALUE str;
    char  *psz;
    char   ch;
    size_t nc, mc = 0;
    SIGNED_VALUE m;
    VALUE  f;

    GUARD_OBJ(vp, GetVpValue(self, 1));

    if (rb_scan_args(argc, argv, "01", &f) == 1) {
  if (RB_TYPE_P(f, T_STRING)) {
      psz = StringValueCStr(f);
      if (*psz == ' ') {
    fPlus = 1;
    psz++;
      }
      else if (*psz == '+') {
    fPlus = 2;
    psz++;
      }
      while ((ch = *psz++) != 0) {
    if (ISSPACE(ch)) {
        continue;
    }
    if (!ISDIGIT(ch)) {
        if (ch == 'F' || ch == 'f') {
      fmt = 1; /* F format */
        }
        break;
    }
    mc = mc*10 + ch - '0';
      }
  }
  else {
      m = NUM2INT(f);
      if (m <= 0) {
    rb_raise(rb_eArgError, "argument must be positive");
      }
      mc = (size_t)m;
  }
    }
    if (fmt) {
  nc = VpNumOfChars(vp, "F");
    }
    else {
  nc = VpNumOfChars(vp, "E");
    }
    if (mc > 0) {
  nc += (nc + mc - 1) / mc + 1;
    }

    str = rb_usascii_str_new(0, nc);
    psz = RSTRING_PTR(str);

    if (fmt) {
  VpToFString(vp, psz, mc, fPlus);
    }
    else {
  VpToString (vp, psz, mc, fPlus);
    }
    rb_str_resize(str, strlen(psz));
    return str;
}

#truncate(*args) ⇒ Object

truncate(n)

Truncate to the nearest integer (by default), returning the result as a BigDecimal.

BigDecimal(‘3.14159’).truncate #=> 3 BigDecimal(‘8.7’).truncate #=> 8 BigDecimal(‘-9.9’).truncate #=> -9

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).truncate(3) #=> 3.141 BigDecimal(‘13345.234’).truncate(-2) #=> 13300.0



1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
# File 'ext/bigdecimal/bigdecimal.c', line 1972

static VALUE
BigDecimal_truncate(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);

    if (rb_scan_args(argc, argv, "01", &vLoc) == 0) {
  iLoc = 0;
    }
    else {
  iLoc = NUM2INT(vLoc);
    }

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, VP_ROUND_DOWN, iLoc); /* 0: truncate */
    if (argc == 0) {
  return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}

#zero?Boolean

Returns True if the value is zero.

Returns:

  • (Boolean)


1244
1245
1246
1247
1248
1249
# File 'ext/bigdecimal/bigdecimal.c', line 1244

static VALUE
BigDecimal_zero(VALUE self)
{
    Real *a = GetVpValue(self, 1);
    return VpIsZero(a) ? Qtrue : Qfalse;
}