Module: BigMath
- Defined in:
- lib/bigdecimal/math.rb
Overview
– Contents:
sqrt(x, prec)
sin (x, prec)
cos (x, prec)
atan(x, prec) Note: |x|<1, x=0.9999 may not converge.
PI (prec)
E (prec) == exp(1.0,prec)
where:
x ... BigDecimal number to be computed.
|x| must be small enough to get convergence.
prec ... Number of digits to be obtained.
++
Provides mathematical functions.
Example:
require "bigdecimal/math"
include BigMath
a = BigDecimal((PI(100)/2).to_s)
puts sin(a,100) # => 0.10000000000000000000......E1
Class Method Summary collapse
-
.atan(x, prec) ⇒ Object
call-seq: atan(decimal, numeric) -> BigDecimal.
-
.cos(x, prec) ⇒ Object
call-seq: cos(decimal, numeric) -> BigDecimal.
-
.E(prec) ⇒ Object
call-seq: E(numeric) -> BigDecimal.
-
.PI(prec) ⇒ Object
call-seq: PI(numeric) -> BigDecimal.
-
.sin(x, prec) ⇒ Object
call-seq: sin(decimal, numeric) -> BigDecimal.
-
.sqrt(x, prec) ⇒ Object
call-seq: sqrt(decimal, numeric) -> BigDecimal.
Class Method Details
.atan(x, prec) ⇒ Object
call-seq:
atan(decimal, numeric) -> BigDecimal
Computes the arctangent of decimal to the specified number of digits of precision, numeric.
If decimal is NaN, returns NaN.
BigMath::atan(BigDecimal.new('-1'), 16).to_s
#=> "-0.785398163397448309615660845819878471907514682065E0"
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
# File 'lib/bigdecimal/math.rb', line 145 def atan(x, prec) raise ArgumentError, "Zero or negative precision for atan" if prec <= 0 return BigDecimal("NaN") if x.nan? pi = PI(prec) x = -x if neg = x < 0 return pi.div(neg ? -2 : 2, prec) if x.infinite? return pi / (neg ? -4 : 4) if x.round(prec) == 1 x = BigDecimal("1").div(x, prec) if inv = x > 1 x = (-1 + sqrt(1 + x**2, prec))/x if dbl = x > 0.5 n = prec + BigDecimal.double_fig y = x d = y t = x r = BigDecimal("3") x2 = x.mult(x,n) while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0) m = BigDecimal.double_fig if m < BigDecimal.double_fig t = -t.mult(x2,n) d = t.div(r,m) y += d r += 2 end y *= 2 if dbl y = pi / 2 - y if inv y = -y if neg y end |
.cos(x, prec) ⇒ Object
call-seq:
cos(decimal, numeric) -> BigDecimal
Computes the cosine of decimal to the specified number of digits of precision, numeric.
If decimal is Infinity or NaN, returns NaN.
BigMath::cos(BigMath::PI(4), 16).to_s
#=> "-0.999999999999999999999999999999856613163740061349E0"
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
# File 'lib/bigdecimal/math.rb', line 101 def cos(x, prec) raise ArgumentError, "Zero or negative precision for cos" if prec <= 0 return BigDecimal("NaN") if x.infinite? || x.nan? n = prec + BigDecimal.double_fig one = BigDecimal("1") two = BigDecimal("2") x = -x if x < 0 if x > (twopi = two * BigMath.PI(prec)) if x > 30 x %= twopi else x -= twopi while x > twopi end end x1 = one x2 = x.mult(x,n) sign = 1 y = one d = y i = BigDecimal("0") z = one while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0) m = BigDecimal.double_fig if m < BigDecimal.double_fig sign = -sign x1 = x2.mult(x1,n) i += two z *= (i-one) * i d = sign * x1.div(z,m) y += d end y end |
.E(prec) ⇒ Object
call-seq:
E(numeric) -> BigDecimal
Computes e (the base of natural logarithms) to the specified number of digits of precision, numeric.
BigMath::E(10).to_s
#=> "0.271828182845904523536028752390026306410273E1"
227 228 229 230 |
# File 'lib/bigdecimal/math.rb', line 227 def E(prec) raise ArgumentError, "Zero or negative precision for E" if prec <= 0 BigMath.exp(1, prec) end |
.PI(prec) ⇒ Object
call-seq:
PI(numeric) -> BigDecimal
Computes the value of pi to the specified number of digits of precision, numeric.
BigMath::PI(10).to_s
#=> "0.3141592653589793238462643388813853786957412E1"
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
# File 'lib/bigdecimal/math.rb', line 182 def PI(prec) raise ArgumentError, "Zero or negative argument for PI" if prec <= 0 n = prec + BigDecimal.double_fig zero = BigDecimal("0") one = BigDecimal("1") two = BigDecimal("2") m25 = BigDecimal("-0.04") m57121 = BigDecimal("-57121") pi = zero d = one k = one t = BigDecimal("-80") while d.nonzero? && ((m = n - (pi.exponent - d.exponent).abs) > 0) m = BigDecimal.double_fig if m < BigDecimal.double_fig t = t*m25 d = t.div(k,m) k = k+two pi = pi + d end d = one k = one t = BigDecimal("956") while d.nonzero? && ((m = n - (pi.exponent - d.exponent).abs) > 0) m = BigDecimal.double_fig if m < BigDecimal.double_fig t = t.div(m57121,n) d = t.div(k,m) pi = pi + d k = k+two end pi end |
.sin(x, prec) ⇒ Object
call-seq:
sin(decimal, numeric) -> BigDecimal
Computes the sine of decimal to the specified number of digits of precision, numeric.
If decimal is Infinity or NaN, returns NaN.
BigMath::sin(BigMath::PI(5)/4, 5).to_s
#=> "0.70710678118654752440082036563292800375E0"
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
# File 'lib/bigdecimal/math.rb', line 57 def sin(x, prec) raise ArgumentError, "Zero or negative precision for sin" if prec <= 0 return BigDecimal("NaN") if x.infinite? || x.nan? n = prec + BigDecimal.double_fig one = BigDecimal("1") two = BigDecimal("2") x = -x if neg = x < 0 if x > (twopi = two * BigMath.PI(prec)) if x > 30 x %= twopi else x -= twopi while x > twopi end end x1 = x x2 = x.mult(x,n) sign = 1 y = x d = y i = one z = one while d.nonzero? && ((m = n - (y.exponent - d.exponent).abs) > 0) m = BigDecimal.double_fig if m < BigDecimal.double_fig sign = -sign x1 = x2.mult(x1,n) i += two z *= (i-one) * i d = sign * x1.div(z,m) y += d end neg ? -y : y end |
.sqrt(x, prec) ⇒ Object
call-seq:
sqrt(decimal, numeric) -> BigDecimal
Computes the square root of decimal to the specified number of digits of precision, numeric.
BigMath::sqrt(BigDecimal.new('2'), 16).to_s
#=> "0.14142135623730950488016887242096975E1"
42 43 44 |
# File 'lib/bigdecimal/math.rb', line 42 def sqrt(x, prec) x.sqrt(prec) end |