Module: Ballistics::Ext

Defined in:
ext/ballistics/ext.c

Class Method Summary collapse

Class Method Details

.trajectory(drag_function, drag_coefficient, velocity, sight_height, shooting_angle, zero_angle, wind_speed, wind_angle, max_range, interval) ⇒ Object



20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# File 'ext/ballistics/ext.c', line 20

VALUE method_trajectory(VALUE self,
			VALUE drag_function,
			VALUE drag_coefficient,
			VALUE velocity,
			VALUE sight_height,
			VALUE shooting_angle,
			VALUE zero_angle,
			VALUE wind_speed,
			VALUE wind_angle,
			VALUE max_range,
			VALUE interval) {

  /* cast ruby variables */
  int    DragFunction = FIX2INT(drag_function);
  double DragCoefficient = NUM2DBL(drag_coefficient);
  double Vi = NUM2DBL(velocity);
  double SightHeight = NUM2DBL(sight_height);
  double ShootingAngle = NUM2DBL(shooting_angle);
  double ZAngle = NUM2DBL(zero_angle);
  double WindSpeed = NUM2DBL(wind_speed);
  double WindAngle = NUM2DBL(wind_angle);
  int    MaxRange = FIX2INT(max_range);
  int    Interval = FIX2INT(interval);

  /* create ruby objects */
  VALUE result_array = rb_ary_new2(MaxRange);


  double t=0;
  double dt=0.5/Vi;
  double v=0;
  double vx=0, vx1=0, vy=0, vy1=0;
  double dv=0, dvx=0, dvy=0;
  double x=0, y=0;

  double headwind=HeadWind(WindSpeed, WindAngle);
  double crosswind=CrossWind(WindSpeed, WindAngle);

  double Gy=GRAVITY*cos(DegtoRad((ShootingAngle + ZAngle)));
  double Gx=GRAVITY*sin(DegtoRad((ShootingAngle + ZAngle)));

  vx=Vi*cos(DegtoRad(ZAngle));
  vy=Vi*sin(DegtoRad(ZAngle));

  y=-SightHeight/12;


  int n=0;
  for (t=0;;t=t+dt){

    vx1=vx, vy1=vy;
    v=pow(pow(vx,2)+pow(vy,2),0.5);
    dt=0.5/v;

    // Compute acceleration using the drag function retardation
    dv = retard(DragFunction,DragCoefficient,v+headwind);
    dvx = -(vx/v)*dv;
    dvy = -(vy/v)*dv;

    // Compute velocity, including the resolved gravity vectors.
    vx=vx + dt*dvx + dt*Gx;
    vy=vy + dt*dvy + dt*Gy;



    int yards = (x/3);
    if (yards>=n){
      if (yards % Interval == 0){
	VALUE entry = rb_hash_new();
	double windage_value = Windage(crosswind,Vi,x,t+dt);
	double moa_windage_value = windage_value / ((yards / 100.0) * 1.0465);
	rb_hash_aset(entry,
		     rb_str_new2("range"),
		     rb_float_new((int)(yards)));
	rb_hash_aset(entry,
		     rb_str_new2("path"),
		     rb_float_new(y*12));
	rb_hash_aset(entry,
		     rb_str_new2("moa_correction"),
		     rb_float_new(-RadtoMOA(atan(y/x))));
	rb_hash_aset(entry,
		     rb_str_new2("time"),
		     rb_float_new(t+dt));
	rb_hash_aset(entry,
		     rb_str_new2("windage"),
		     rb_float_new(windage_value));
	rb_hash_aset(entry,
		     rb_str_new2("moa_windage"),
		     rb_float_new(moa_windage_value));
	rb_hash_aset(entry,
		     rb_str_new2("velocity"),
		     rb_float_new(v));
	rb_ary_push(result_array, entry);
      }
      n++;
    }

    // Compute position based on average velocity.
    x=x+dt*(vx+vx1)/2;
    y=y+dt*(vy+vy1)/2;

    if (fabs(vy)>fabs(3*vx)) break;
    if (n>=MaxRange+1) break;
  }

  return result_array;
}

.zero_angle(drag_function, drag_coefficient, velocity, sight_height, zero_range, y_intercept) ⇒ Object



4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# File 'ext/ballistics/ext.c', line 4

VALUE method_zero_angle(VALUE self,
			VALUE drag_function,
			VALUE drag_coefficient,
			VALUE velocity,
			VALUE sight_height,
			VALUE zero_range,
			VALUE y_intercept) {
  double angle =  ZeroAngle(FIX2INT(drag_function),
			    NUM2DBL(drag_coefficient),
			    NUM2DBL(velocity),
			    NUM2DBL(sight_height),
			    NUM2DBL(zero_range),
			    NUM2DBL(y_intercept));
  return rb_float_new(angle);
}