Class: Aws::SageMaker::Types::HyperParameterTuningJobConfig

Inherits:
Struct
  • Object
show all
Includes:
Aws::Structure
Defined in:
lib/aws-sdk-sagemaker/types.rb

Overview

Configures a hyperparameter tuning job.

Constant Summary collapse

SENSITIVE =
[]

Instance Attribute Summary collapse

Instance Attribute Details

#hyper_parameter_tuning_job_objectiveTypes::HyperParameterTuningJobObjective

The [HyperParameterTuningJobObjective] specifies the objective metric used to evaluate the performance of training jobs launched by this tuning job.

[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_HyperParameterTuningJobObjective.html



27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
# File 'lib/aws-sdk-sagemaker/types.rb', line 27656

class HyperParameterTuningJobConfig < Struct.new(
  :strategy,
  :strategy_config,
  :hyper_parameter_tuning_job_objective,
  :resource_limits,
  :parameter_ranges,
  :training_job_early_stopping_type,
  :tuning_job_completion_criteria,
  :random_seed)
  SENSITIVE = []
  include Aws::Structure
end

#parameter_rangesTypes::ParameterRanges

The [ParameterRanges] object that specifies the ranges of hyperparameters that this tuning job searches over to find the optimal configuration for the highest model performance against your chosen objective metric.

[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_ParameterRanges.html



27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
# File 'lib/aws-sdk-sagemaker/types.rb', line 27656

class HyperParameterTuningJobConfig < Struct.new(
  :strategy,
  :strategy_config,
  :hyper_parameter_tuning_job_objective,
  :resource_limits,
  :parameter_ranges,
  :training_job_early_stopping_type,
  :tuning_job_completion_criteria,
  :random_seed)
  SENSITIVE = []
  include Aws::Structure
end

#random_seedInteger

A value used to initialize a pseudo-random number generator. Setting a random seed and using the same seed later for the same tuning job will allow hyperparameter optimization to find more a consistent hyperparameter configuration between the two runs.



27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
# File 'lib/aws-sdk-sagemaker/types.rb', line 27656

class HyperParameterTuningJobConfig < Struct.new(
  :strategy,
  :strategy_config,
  :hyper_parameter_tuning_job_objective,
  :resource_limits,
  :parameter_ranges,
  :training_job_early_stopping_type,
  :tuning_job_completion_criteria,
  :random_seed)
  SENSITIVE = []
  include Aws::Structure
end

#resource_limitsTypes::ResourceLimits

The [ResourceLimits] object that specifies the maximum number of training and parallel training jobs that can be used for this hyperparameter tuning job.

[1]: docs.aws.amazon.com/sagemaker/latest/APIReference/API_ResourceLimits.html



27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
# File 'lib/aws-sdk-sagemaker/types.rb', line 27656

class HyperParameterTuningJobConfig < Struct.new(
  :strategy,
  :strategy_config,
  :hyper_parameter_tuning_job_objective,
  :resource_limits,
  :parameter_ranges,
  :training_job_early_stopping_type,
  :tuning_job_completion_criteria,
  :random_seed)
  SENSITIVE = []
  include Aws::Structure
end

#strategyString

Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. For information about search strategies, see [How Hyperparameter Tuning Works].

[1]: docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-how-it-works.html



27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
# File 'lib/aws-sdk-sagemaker/types.rb', line 27656

class HyperParameterTuningJobConfig < Struct.new(
  :strategy,
  :strategy_config,
  :hyper_parameter_tuning_job_objective,
  :resource_limits,
  :parameter_ranges,
  :training_job_early_stopping_type,
  :tuning_job_completion_criteria,
  :random_seed)
  SENSITIVE = []
  include Aws::Structure
end

#strategy_configTypes::HyperParameterTuningJobStrategyConfig

The configuration for the Hyperband optimization strategy. This parameter should be provided only if Hyperband is selected as the strategy for HyperParameterTuningJobConfig.



27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
# File 'lib/aws-sdk-sagemaker/types.rb', line 27656

class HyperParameterTuningJobConfig < Struct.new(
  :strategy,
  :strategy_config,
  :hyper_parameter_tuning_job_objective,
  :resource_limits,
  :parameter_ranges,
  :training_job_early_stopping_type,
  :tuning_job_completion_criteria,
  :random_seed)
  SENSITIVE = []
  include Aws::Structure
end

#training_job_early_stopping_typeString

Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job. Because the Hyperband strategy has its own advanced internal early stopping mechanism, TrainingJobEarlyStoppingType must be OFF to use Hyperband. This parameter can take on one of the following values (the default value is OFF):

OFF

: Training jobs launched by the hyperparameter tuning job do not use

early stopping.

AUTO

: SageMaker stops training jobs launched by the hyperparameter

tuning job when they are unlikely to perform better than
previously completed training jobs. For more information, see
[Stop Training Jobs Early][1].

[1]: docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-early-stopping.html



27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
# File 'lib/aws-sdk-sagemaker/types.rb', line 27656

class HyperParameterTuningJobConfig < Struct.new(
  :strategy,
  :strategy_config,
  :hyper_parameter_tuning_job_objective,
  :resource_limits,
  :parameter_ranges,
  :training_job_early_stopping_type,
  :tuning_job_completion_criteria,
  :random_seed)
  SENSITIVE = []
  include Aws::Structure
end

#tuning_job_completion_criteriaTypes::TuningJobCompletionCriteria

The tuning job’s completion criteria.



27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
# File 'lib/aws-sdk-sagemaker/types.rb', line 27656

class HyperParameterTuningJobConfig < Struct.new(
  :strategy,
  :strategy_config,
  :hyper_parameter_tuning_job_objective,
  :resource_limits,
  :parameter_ranges,
  :training_job_early_stopping_type,
  :tuning_job_completion_criteria,
  :random_seed)
  SENSITIVE = []
  include Aws::Structure
end