Class: Aws::SageMaker::Types::CreateTrainingJobRequest
- Inherits:
-
Struct
- Object
- Struct
- Aws::SageMaker::Types::CreateTrainingJobRequest
- Includes:
- Aws::Structure
- Defined in:
- lib/aws-sdk-sagemaker/types.rb
Overview
When making an API call, you may pass CreateTrainingJobRequest data as a hash:
{
training_job_name: "TrainingJobName", # required
hyper_parameters: {
"ParameterKey" => "ParameterValue",
},
algorithm_specification: { # required
training_image: "AlgorithmImage",
algorithm_name: "ArnOrName",
training_input_mode: "Pipe", # required, accepts Pipe, File
metric_definitions: [
{
name: "MetricName", # required
regex: "MetricRegex", # required
},
],
enable_sage_maker_metrics_time_series: false,
},
role_arn: "RoleArn", # required
input_data_config: [
{
channel_name: "ChannelName", # required
data_source: { # required
s3_data_source: {
s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix, AugmentedManifestFile
s3_uri: "S3Uri", # required
s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
attribute_names: ["AttributeName"],
},
file_system_data_source: {
file_system_id: "FileSystemId", # required
file_system_access_mode: "rw", # required, accepts rw, ro
file_system_type: "EFS", # required, accepts EFS, FSxLustre
directory_path: "DirectoryPath", # required
},
},
content_type: "ContentType",
compression_type: "None", # accepts None, Gzip
record_wrapper_type: "None", # accepts None, RecordIO
input_mode: "Pipe", # accepts Pipe, File
shuffle_config: {
seed: 1, # required
},
},
],
output_data_config: { # required
kms_key_id: "KmsKeyId",
s3_output_path: "S3Uri", # required
},
resource_config: { # required
instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge
instance_count: 1, # required
volume_size_in_gb: 1, # required
volume_kms_key_id: "KmsKeyId",
},
vpc_config: {
security_group_ids: ["SecurityGroupId"], # required
subnets: ["SubnetId"], # required
},
stopping_condition: { # required
max_runtime_in_seconds: 1,
max_wait_time_in_seconds: 1,
},
tags: [
{
key: "TagKey", # required
value: "TagValue", # required
},
],
enable_network_isolation: false,
enable_inter_container_traffic_encryption: false,
enable_managed_spot_training: false,
checkpoint_config: {
s3_uri: "S3Uri", # required
local_path: "DirectoryPath",
},
debug_hook_config: {
local_path: "DirectoryPath",
s3_output_path: "S3Uri", # required
hook_parameters: {
"ConfigKey" => "ConfigValue",
},
collection_configurations: [
{
collection_name: "CollectionName",
collection_parameters: {
"ConfigKey" => "ConfigValue",
},
},
],
},
debug_rule_configurations: [
{
rule_configuration_name: "RuleConfigurationName", # required
local_path: "DirectoryPath",
s3_output_path: "S3Uri",
rule_evaluator_image: "AlgorithmImage", # required
instance_type: "ml.t3.medium", # accepts ml.t3.medium, ml.t3.large, ml.t3.xlarge, ml.t3.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.8xlarge, ml.r5.12xlarge, ml.r5.16xlarge, ml.r5.24xlarge
volume_size_in_gb: 1,
rule_parameters: {
"ConfigKey" => "ConfigValue",
},
},
],
tensor_board_output_config: {
local_path: "DirectoryPath",
s3_output_path: "S3Uri", # required
},
experiment_config: {
experiment_name: "ExperimentConfigName",
trial_name: "ExperimentConfigName",
trial_component_display_name: "ExperimentConfigName",
},
}
Instance Attribute Summary collapse
-
#algorithm_specification ⇒ Types::AlgorithmSpecification
The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode.
-
#checkpoint_config ⇒ Types::CheckpointConfig
Contains information about the output location for managed spot training checkpoint data.
-
#debug_hook_config ⇒ Types::DebugHookConfig
Configuration information for the debug hook parameters, collection configuration, and storage paths.
-
#debug_rule_configurations ⇒ Array<Types::DebugRuleConfiguration>
Configuration information for debugging rules.
-
#enable_inter_container_traffic_encryption ⇒ Boolean
To encrypt all communications between ML compute instances in distributed training, choose ‘True`.
-
#enable_managed_spot_training ⇒ Boolean
To train models using managed spot training, choose ‘True`.
-
#enable_network_isolation ⇒ Boolean
Isolates the training container.
-
#experiment_config ⇒ Types::ExperimentConfig
Configuration for the experiment.
-
#hyper_parameters ⇒ Hash<String,String>
Algorithm-specific parameters that influence the quality of the model.
-
#input_data_config ⇒ Array<Types::Channel>
An array of ‘Channel` objects.
-
#output_data_config ⇒ Types::OutputDataConfig
Specifies the path to the S3 location where you want to store model artifacts.
-
#resource_config ⇒ Types::ResourceConfig
The resources, including the ML compute instances and ML storage volumes, to use for model training.
-
#role_arn ⇒ String
The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
-
#stopping_condition ⇒ Types::StoppingCondition
Specifies a limit to how long a model training job can run.
-
#tags ⇒ Array<Types::Tag>
An array of key-value pairs.
-
#tensor_board_output_config ⇒ Types::TensorBoardOutputConfig
Configuration of storage locations for TensorBoard output.
-
#training_job_name ⇒ String
The name of the training job.
-
#vpc_config ⇒ Types::VpcConfig
A VpcConfig object that specifies the VPC that you want your training job to connect to.
Instance Attribute Details
#algorithm_specification ⇒ Types::AlgorithmSpecification
The registry path of the Docker image that contains the training algorithm and algorithm-specific metadata, including the input mode. For more information about algorithms provided by Amazon SageMaker, see [Algorithms]. For information about providing your own algorithms, see [Using Your Own Algorithms with Amazon SageMaker].
[1]: docs.aws.amazon.com/sagemaker/latest/dg/algos.html [2]: docs.aws.amazon.com/sagemaker/latest/dg/your-algorithms.html
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 4673 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config) include Aws::Structure end |
#checkpoint_config ⇒ Types::CheckpointConfig
Contains information about the output location for managed spot training checkpoint data.
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 4673 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config) include Aws::Structure end |
#debug_hook_config ⇒ Types::DebugHookConfig
Configuration information for the debug hook parameters, collection configuration, and storage paths.
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 4673 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config) include Aws::Structure end |
#debug_rule_configurations ⇒ Array<Types::DebugRuleConfiguration>
Configuration information for debugging rules.
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 4673 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config) include Aws::Structure end |
#enable_inter_container_traffic_encryption ⇒ Boolean
To encrypt all communications between ML compute instances in distributed training, choose ‘True`. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training. For more information, see [Protect Communications Between ML Compute Instances in a Distributed Training Job].
[1]: docs.aws.amazon.com/sagemaker/latest/dg/train-encrypt.html
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 4673 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config) include Aws::Structure end |
#enable_managed_spot_training ⇒ Boolean
To train models using managed spot training, choose ‘True`. Managed spot training provides a fully managed and scalable infrastructure for training machine learning models. this option is useful when training jobs can be interrupted and when there is flexibility when the training job is run.
The complete and intermediate results of jobs are stored in an Amazon S3 bucket, and can be used as a starting point to train models incrementally. Amazon SageMaker provides metrics and logs in CloudWatch. They can be used to see when managed spot training jobs are running, interrupted, resumed, or completed.
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 4673 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config) include Aws::Structure end |
#enable_network_isolation ⇒ Boolean
Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If you enable network isolation for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.
<note markdown=“1”> The Semantic Segmentation built-in algorithm does not support network isolation.
</note>
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 4673 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config) include Aws::Structure end |
#experiment_config ⇒ Types::ExperimentConfig
Configuration for the experiment.
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 4673 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config) include Aws::Structure end |
#hyper_parameters ⇒ Hash<String,String>
Algorithm-specific parameters that influence the quality of the model. You set hyperparameters before you start the learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see [Algorithms].
You can specify a maximum of 100 hyperparameters. Each hyperparameter is a key-value pair. Each key and value is limited to 256 characters, as specified by the ‘Length Constraint`.
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 4673 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config) include Aws::Structure end |
#input_data_config ⇒ Array<Types::Channel>
An array of ‘Channel` objects. Each channel is a named input source. `InputDataConfig` describes the input data and its location.
Algorithms can accept input data from one or more channels. For example, an algorithm might have two channels of input data, ‘training_data` and `validation_data`. The configuration for each channel provides the S3, EFS, or FSx location where the input data is stored. It also provides information about the stored data: the MIME type, compression method, and whether the data is wrapped in RecordIO format.
Depending on the input mode that the algorithm supports, Amazon SageMaker either copies input data files from an S3 bucket to a local directory in the Docker container, or makes it available as input streams. For example, if you specify an EFS location, input data files will be made available as input streams. They do not need to be downloaded.
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 4673 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config) include Aws::Structure end |
#output_data_config ⇒ Types::OutputDataConfig
Specifies the path to the S3 location where you want to store model artifacts. Amazon SageMaker creates subfolders for the artifacts.
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 4673 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config) include Aws::Structure end |
#resource_config ⇒ Types::ResourceConfig
The resources, including the ML compute instances and ML storage volumes, to use for model training.
ML storage volumes store model artifacts and incremental states. Training algorithms might also use ML storage volumes for scratch space. If you want Amazon SageMaker to use the ML storage volume to store the training data, choose ‘File` as the `TrainingInputMode` in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 4673 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config) include Aws::Structure end |
#role_arn ⇒ String
The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
During model training, Amazon SageMaker needs your permission to read input data from an S3 bucket, download a Docker image that contains training code, write model artifacts to an S3 bucket, write logs to Amazon CloudWatch Logs, and publish metrics to Amazon CloudWatch. You grant permissions for all of these tasks to an IAM role. For more information, see [Amazon SageMaker Roles].
<note markdown=“1”> To be able to pass this role to Amazon SageMaker, the caller of this API must have the ‘iam:PassRole` permission.
</note>
[1]: docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 4673 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config) include Aws::Structure end |
#stopping_condition ⇒ Types::StoppingCondition
Specifies a limit to how long a model training job can run. When the job reaches the time limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.
To stop a job, Amazon SageMaker sends the algorithm the ‘SIGTERM` signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 4673 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config) include Aws::Structure end |
#tags ⇒ Array<Types::Tag>
An array of key-value pairs. For more information, see [Using Cost Allocation Tags] in the *AWS Billing and Cost Management User Guide*.
[1]: docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html#allocation-what
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 4673 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config) include Aws::Structure end |
#tensor_board_output_config ⇒ Types::TensorBoardOutputConfig
Configuration of storage locations for TensorBoard output.
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 4673 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config) include Aws::Structure end |
#training_job_name ⇒ String
The name of the training job. The name must be unique within an AWS Region in an AWS account.
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 4673 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config) include Aws::Structure end |
#vpc_config ⇒ Types::VpcConfig
A VpcConfig object that specifies the VPC that you want your training job to connect to. Control access to and from your training container by configuring the VPC. For more information, see [Protect Training Jobs by Using an Amazon Virtual Private Cloud].
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 |
# File 'lib/aws-sdk-sagemaker/types.rb', line 4673 class CreateTrainingJobRequest < Struct.new( :training_job_name, :hyper_parameters, :algorithm_specification, :role_arn, :input_data_config, :output_data_config, :resource_config, :vpc_config, :stopping_condition, :tags, :enable_network_isolation, :enable_inter_container_traffic_encryption, :enable_managed_spot_training, :checkpoint_config, :debug_hook_config, :debug_rule_configurations, :tensor_board_output_config, :experiment_config) include Aws::Structure end |