Class: Anthropic::Models::MessageCountTokensParams
- Inherits:
-
Internal::Type::BaseModel
- Object
- Internal::Type::BaseModel
- Anthropic::Models::MessageCountTokensParams
- Extended by:
- Internal::Type::RequestParameters::Converter
- Includes:
- Internal::Type::RequestParameters
- Defined in:
- lib/anthropic/models/message_count_tokens_params.rb
Overview
Defined Under Namespace
Modules: System
Instance Attribute Summary collapse
-
#messages ⇒ Array<Anthropic::Models::MessageParam>
Input messages.
-
#model ⇒ Symbol, ...
The model that will complete your prompt.nnSee [models](docs.anthropic.com/en/docs/models-overview) for additional details and options.
-
#system_ ⇒ String, ...
System prompt.
-
#thinking ⇒ Anthropic::Models::ThinkingConfigEnabled, ...
Configuration for enabling Claude’s extended thinking.
-
#tool_choice ⇒ Anthropic::Models::ToolChoiceAuto, ...
How the model should use the provided tools.
-
#tools ⇒ Array<Anthropic::Models::Tool, Anthropic::Models::ToolBash20250124, Anthropic::Models::ToolTextEditor20250124, Anthropic::Models::ToolTextEditor20250429, Anthropic::Models::ToolTextEditor20250728, Anthropic::Models::WebSearchTool20250305>?
Definitions of tools that the model may use.
Attributes included from Internal::Type::RequestParameters
Instance Method Summary collapse
-
#initialize(messages:, model:, system_: nil, thinking: nil, tool_choice: nil, tools: nil, request_options: {}) ⇒ Object
constructor
Some parameter documentations has been truncated, see MessageCountTokensParams for more details.
Methods included from Internal::Type::RequestParameters::Converter
Methods included from Internal::Type::RequestParameters
Methods inherited from Internal::Type::BaseModel
==, #==, #[], coerce, #deconstruct_keys, #deep_to_h, dump, fields, hash, #hash, inherited, inspect, #inspect, known_fields, optional, recursively_to_h, required, #to_h, #to_json, #to_s, to_sorbet_type, #to_yaml
Methods included from Internal::Type::Converter
#coerce, coerce, #dump, dump, inspect, #inspect, meta_info, new_coerce_state, type_info
Methods included from Internal::Util::SorbetRuntimeSupport
#const_missing, #define_sorbet_constant!, #sorbet_constant_defined?, #to_sorbet_type, to_sorbet_type
Constructor Details
#initialize(messages:, model:, system_: nil, thinking: nil, tool_choice: nil, tools: nil, request_options: {}) ⇒ Object
Some parameter documentations has been truncated, see Anthropic::Models::MessageCountTokensParams for more details.
|
|
# File 'lib/anthropic/models/message_count_tokens_params.rb', line 199
|
Instance Attribute Details
#messages ⇒ Array<Anthropic::Models::MessageParam>
Input messages.
Our models are trained to operate on alternating user and assistant conversational turns. When creating a new Message, you specify the prior conversational turns with the messages parameter, and the model then generates the next Message in the conversation. Consecutive user or assistant turns in your request will be combined into a single turn.
Each input message must be an object with a role and content. You can specify a single user-role message, or you can include multiple user and assistant messages.
If the final message uses the assistant role, the response content will continue immediately from the content in that message. This can be used to constrain part of the model’s response.
Example with a single user message:
“‘json
- { “role”: “user”, “content”: “Hello, Claude” }
-
“‘
Example with multiple conversational turns:
“‘json [
{ "role": "user", "content": "Hello there." }, { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" }, { "role": "user", "content": "Can you explain LLMs in plain English?" }] “‘
Example with a partially-filled response from Claude:
“‘json [
{ "role": "user", "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun" }, { "role": "assistant", "content": "The best answer is (" }] “‘
Each input message
contentmay be either a singlestringor an array of content blocks, where each block has a specifictype. Using astringforcontentis shorthand for an array of one content block of type ‘“text”`. The following input messages are equivalent:“‘json { “role”: “user”, “content”: “Hello, Claude” } “`
“‘json { “role”: “user”, “content”: [{ “type”: “text”, “text”: “Hello, Claude” }] } “`
See [input examples](docs.claude.com/en/api/messages-examples).
Note that if you want to include a [system prompt](docs.claude.com/en/docs/system-prompts), you can use the top-level
systemparameter — there is no ‘“system”` role for input messages in the Messages API.There is a limit of 100,000 messages in a single request.
78 |
# File 'lib/anthropic/models/message_count_tokens_params.rb', line 78 required :messages, -> { Anthropic::Internal::Type::ArrayOf[Anthropic::MessageParam] } |
#model ⇒ Symbol, ...
The model that will complete your prompt.nnSee [models](docs.anthropic.com/en/docs/models-overview) for additional details and options.
86 |
# File 'lib/anthropic/models/message_count_tokens_params.rb', line 86 required :model, union: -> { Anthropic::Model } |
#system_ ⇒ String, ...
System prompt.
A system prompt is a way of providing context and instructions to Claude, such as specifying a particular goal or role. See our [guide to system prompts](docs.claude.com/en/docs/system-prompts).
96 |
# File 'lib/anthropic/models/message_count_tokens_params.rb', line 96 optional :system_, union: -> { Anthropic::MessageCountTokensParams::System }, api_name: :system |
#thinking ⇒ Anthropic::Models::ThinkingConfigEnabled, ...
Configuration for enabling Claude’s extended thinking.
When enabled, responses include thinking content blocks showing Claude’s thinking process before the final answer. Requires a minimum budget of 1,024 tokens and counts towards your max_tokens limit.
See [extended thinking](docs.claude.com/en/docs/build-with-claude/extended-thinking) for details.
110 |
# File 'lib/anthropic/models/message_count_tokens_params.rb', line 110 optional :thinking, union: -> { Anthropic::ThinkingConfigParam } |
#tool_choice ⇒ Anthropic::Models::ToolChoiceAuto, ...
How the model should use the provided tools. The model can use a specific tool, any available tool, decide by itself, or not use tools at all.
117 |
# File 'lib/anthropic/models/message_count_tokens_params.rb', line 117 optional :tool_choice, union: -> { Anthropic::ToolChoice } |
#tools ⇒ Array<Anthropic::Models::Tool, Anthropic::Models::ToolBash20250124, Anthropic::Models::ToolTextEditor20250124, Anthropic::Models::ToolTextEditor20250429, Anthropic::Models::ToolTextEditor20250728, Anthropic::Models::WebSearchTool20250305>?
Definitions of tools that the model may use.
If you include tools in your API request, the model may return tool_use content blocks that represent the model’s use of those tools. You can then run those tools using the tool input generated by the model and then optionally return results back to the model using tool_result content blocks.
There are two types of tools: **client tools** and **server tools**. The behavior described below applies to client tools. For [server tools](docs.claude.com/en/docs/agents-and-tools/tool-use/overview#server-tools), see their individual documentation as each has its own behavior (e.g., the [web search tool](docs.claude.com/en/docs/agents-and-tools/tool-use/web-search-tool)).
Each tool definition includes:
-
name: Name of the tool. -
description: Optional, but strongly-recommended description of the tool. -
input_schema: [JSON schema](json-schema.org/draft/2020-12) for the toolinputshape that the model will produce intool_useoutput content blocks.
For example, if you defined tools as:
“‘json [
{
"name": "get_stock_price",
"description": "Get the current stock price for a given ticker symbol.",
"input_schema": {
"type": "object",
"properties": {
"ticker": {
"type": "string",
"description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
}
},
"required": ["ticker"]
}
}
] “‘
And then asked the model “What’s the S&P 500 at today?”, the model might produce tool_use content blocks in the response like this:
“‘json [
{
"type": "tool_use",
"id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
"name": "get_stock_price",
"input": { "ticker": "^GSPC" }
}
] “‘
You might then run your get_stock_price tool with ‘“^GSPC”` as an input, and return the following back to the model in a subsequent user message:
“‘json [
{
"type": "tool_result",
"tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
"content": "259.75 USD"
}
] “‘
Tools can be used for workflows that include running client-side tools and functions, or more generally whenever you want the model to produce a particular JSON structure of output.
See our [guide](docs.claude.com/en/docs/tool-use) for more details.
197 |
# File 'lib/anthropic/models/message_count_tokens_params.rb', line 197 optional :tools, -> { Anthropic::Internal::Type::ArrayOf[union: Anthropic::MessageCountTokensTool] } |