Class: Aims::ZincBlende

Inherits:
Object
  • Object
show all
Includes:
Vectorize, Math
Defined in:
lib/aims/zinc_blende.rb

Overview

Factory class for generating slabs for various crystal surfaces of specified thickness and with the specified vacuum. Example:

zb = ZincBlende.new("Ga", "As", 5.65)
zb.get_bulk -> # returns the a unit cell with two atoms
zb.get_111B_surface(7, 20, 3) # returns a slab of 111B 7 monolayers thick, with 20 angstrom of vacuum, and the bottom 3 layers constrained

Instance Attribute Summary collapse

Instance Method Summary collapse

Methods included from Vectorize

#cross, #dot

Constructor Details

#initialize(cation, anion, lattice_const) ⇒ ZincBlende

Initialize the zinc-blende Geometry cation and anion are the atomic species occupying the two different sub-lattices. lattice_const specifies the lattice constant



22
23
24
25
26
# File 'lib/aims/zinc_blende.rb', line 22

def initialize(cation, anion, lattice_const)
  self.lattice_const = lattice_const
  self.cation = cation
  self.anion = anion
end

Instance Attribute Details

#anionObject

Returns the value of attribute anion.



16
17
18
# File 'lib/aims/zinc_blende.rb', line 16

def anion
  @anion
end

#cationObject

Returns the value of attribute cation.



16
17
18
# File 'lib/aims/zinc_blende.rb', line 16

def cation
  @cation
end

#lattice_constObject

Returns the value of attribute lattice_const.



16
17
18
# File 'lib/aims/zinc_blende.rb', line 16

def lattice_const
  @lattice_const
end

Instance Method Details

#fill_volume(volume) ⇒ Object

Fill the given volume with atoms



49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# File 'lib/aims/zinc_blende.rb', line 49

def fill_volume(volume)
  
  # First fill a cube that bounds the volume
  max = volume.max_point
  min = volume.min_point
  
  dx = max[0] - min[0]
  dy = max[1] - min[1]
  dz = max[2] - min[2]
  
  bulk = get_bulk
  
  # This inverse matrix gives the number of repetitions 
  m = Matrix[[dx,0,0], [0,dy,0], [0,0,dz]]
  v = Matrix[bulk.lattice_vectors[0].to_a, 
             bulk.lattice_vectors[1].to_a,
             bulk.lattice_vectors[2].to_a]
  rep_mat = m*(v.inverse)
  
  # The only way I can figure out how to do this for an 
  # arbitrary set of lattice vectors is to fill the volume
  # out along each edge of the super-cube and then eliminate duplicates
  atoms = []
  3.times do |i|
    # this vector is the number of repetitions in the unit cell
    # to fill the volume out along the i-th edge of the super-cube
    n_repeat = rep_mat.row(i)
    
    # Give the proper sign to the repeat
    nx = (n_repeat[0] < 0) ? n_repeat[0].floor-1 : n_repeat[0].ceil+1
    ny = (n_repeat[1] < 0) ? n_repeat[1].floor-1 : n_repeat[1].ceil+1
    nz = (n_repeat[2] < 0) ? n_repeat[2].floor-1 : n_repeat[2].ceil+1
    
    atoms += bulk.repeat(nx, ny, nz).atoms.find_all{|a| volume.contains_point(a.x, a.y, a.z)}
  end
  Geometry.new(atoms.uniq)
end

#get_001_surface(monolayers, vacuum, constrain_layers = 0) ⇒ Object Also known as: get_100_surface, get_010_surface

Return a unit cell for a slab of 001 Specify the number of atomic monolayers, the vacuum thickness in angstrom, and the number of layers to constrain at the base of the slab



91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# File 'lib/aims/zinc_blende.rb', line 91

def get_001_surface(monolayers, vacuum, constrain_layers = 0)
  anion = Atom.new(0,0,0,self.cation)
  cation = Atom.new(0.25*self.lattice_const, 0.25*self.lattice_const, 0.25*self.lattice_const, self.anion)
  v1 = Vector[0.5, 0.5, 0]*self.lattice_const
  v2 = Vector[-0.5,0.5,0]*self.lattice_const
  v3 = Vector[0.5, 0, 0.5]*self.lattice_const
  
  zb = Geometry.new([anion, cation], [v1,v2,v3])
  millerX = [1,0,0]
  millerY = [0,1,0]
  millerZ = [0,0,1]
  zb.set_miller_indices(millerX, millerY, millerZ)
  
  # Repeat the unit cell.  The unit cell is a bi-layer so divide by 2
  zb = zb.repeat(1,1,(monolayers/2).ceil)

  if 0 < vacuum
    # Add vacuum
    monolayerSep = v3[2]/2
    zb.lattice_vectors[2] = Vector[0, 0, (monolayers-1)*monolayerSep.abs + vacuum.to_f]
    # Move everything into a nice tidy unit cell. 
    zb = zb.correct
  end

  minZ = zb.atoms.min{|a,b| a.z <=> b.z}.z
  
  # Reject the top layer of atoms if an odd number of monolayers was requested.
  # This is necessary because the primitive cell is a bilayer
  zb.atoms.reject! {|a| 
    a.z >= (minZ + monolayerSep.abs*monolayers)
  }
  
  # Constrain the bottom layers
  zb.atoms.each{|a|
    if (a.z < minZ + monolayerSep.abs*constrain_layers)
      a.constrain = ".true."
    end
  }
  
  # Return the completed unit cell
  return zb
end

#get_110_surface(monolayers, vacuum = 0, constrain_layers = 0) ⇒ Object

Return a unit cell for a slab of 110 specify the number of atomic monolayers and the vacuum thickness in angstrom



266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# File 'lib/aims/zinc_blende.rb', line 266

def get_110_surface(monolayers, vacuum=0, constrain_layers = 0)

  # The atoms on a FCC 
  atom1 = Atom.new(0,0,0,self.cation)
  atom2 = Atom.new(self.lattice_const*1/(2*sqrt(2)), self.lattice_const*0.25, 0.0, self.anion)

  # The lattice Vectors
  v1 = Vector[1/sqrt(2), 0.0, 0.0]*self.lattice_const
  v2 = Vector[0.0, 1.0, 0.0]*self.lattice_const
  v3 = Vector[1/(2*sqrt(2)), -0.5, 1/(2*sqrt(2))]*self.lattice_const

  # The miller indices for each primitive cartesian direction
  millerX = Vector[1, -1, 0]
  millerY = Vector[0, 0, 1]
  millerZ = Vector[1, 1, 0]

  # The unit cell
  zb = Geometry.new([atom1, atom2], [v1, v2, v3])
  zb.set_miller_indices(millerX, millerY, millerZ)

  # Repeat the unit cell
  zb = zb.repeat(1,1,monolayers)


  monolayerSep = v3[2]
  if 0 < vacuum
    # Add vacuum
    zb.lattice_vectors[2] = Vector[0, 0, (monolayers-1)*monolayerSep.abs + vacuum.to_f]
    # Move everything into a nice tidy unit cell. 
    zb = zb.correct
  end

  # # Constrain the bottom layers
  zb.atoms.each{|a|
    if (a.z < monolayerSep*constrain_layers)
      a.constrain = ".true."
    end
  }

  
  # Return the completed unit cell
  return zb
end

#get_111_surface(dir, monolayers, vacuum, constrain_layers = 0) ⇒ Object

Return a unit cell for a slab of 111 dir is either “A” or “B” for the cation or anion terminated slab specify the number of atomic monolayers and the vacuum thickness in angstrom



157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# File 'lib/aims/zinc_blende.rb', line 157

def get_111_surface(dir, monolayers, vacuum, constrain_layers = 0)

  if dir == "A"
    top_atom = self.anion
    bot_atom = self.cation
  elsif dir == "B"
    top_atom = self.cation
    bot_atom = self.anion
  else
    raise "Direction must be either A or B"
  end
  
  # The atoms on a FCC 
  as1 = Atom.new(0.0, 0.0, 0.0, top_atom)
  ga1 = Atom.new(0.0, 0.0, -sqrt(3)/4*self.lattice_const, bot_atom)

  # The lattice Vectors
  v1 = Vector[0.5*sqrt(2), 0.0, 0.0]*self.lattice_const
  v2 = Vector[sqrt(2)*0.25, sqrt(6)*0.25, 0.0]*self.lattice_const
  v3 = Vector[sqrt(2)*0.25, sqrt(2.0/3.0)*0.25, -1*sqrt(4.0/3.0)*0.5]*self.lattice_const

  # The unit cell
  zb = Geometry.new([as1, ga1], [v1, v2, v3])

  # The Miller Indices
  millerX = [-1, 1, 0]  # Orientation of the crystal pointing in the cartesian +x axis
  millerY = [1, 1, -2]  # Orientation of the crystal pointing in the cartesian +y axis
  millerZ = [-1, -1, -1] # Orientation of the crystal pointing in the cartesian +z axis

  zb.set_miller_indices(millerX, millerY, millerZ)

  # Repeat the unit cell and add vacuum
  if 0 < vacuum 
    # We actually repeat the unit cell monolayers+1 times because
    # I will strip off the top and bottom atoms to make the proper surface
    zb = zb.repeat(1,1,monolayers+1)
    
    bilayerSep = v3[2]
    zb.lattice_vectors[2] = Vector[0, 0, (monolayers-1)*(bilayerSep.abs) + vacuum]

    # Strip off the top and bottom atom
    minZ = zb.atoms.min{|a,b| a.z <=> b.z}.z
    maxZ = zb.atoms.max{|a,b| a.z <=> b.z}.z

    zb.atoms.reject!{|a| a.z == maxZ}
    zb.atoms.reject!{|a| a.z == minZ}

    # Constrain the bottom layers if requested
    if 0 < constrain_layers
      # get the min again because we removed the atoms at minZ above
      minZ = zb.atoms.min{|a,b| a.z <=> b.z}.z
      constrain_below = minZ + bilayerSep.abs*constrain_layers
      zb.atoms.each{|a|
        if (a.z < constrain_below)
          a.constrain = ".true."
        end
      }
    end
  end
  
  zb
end

#get_111A_surface(monolayers, vacuum, constrain_layers = 0) ⇒ Object

Return a unit cell for a slab of 111A (anion terminated) specify the number of atomic monolayers, the vacuum thickness in angstrom, and the number of layers to constrain at the base of the slab



140
141
142
143
# File 'lib/aims/zinc_blende.rb', line 140

def get_111A_surface(monolayers, vacuum, constrain_layers = 0)
  # get the 111B surface, then reflect it about z=0
  get_111_surface("A", monolayers, vacuum, constrain_layers)
end

#get_111B_surface(monolayers, vacuum, constrain_layers = 0) ⇒ Object

Return a unit cell for a slab of 111A (cation terminated) specify the number of atomic monolayers, the vacuum thickness in angstrom, and the number of layers to constrain at the base of the slab



149
150
151
# File 'lib/aims/zinc_blende.rb', line 149

def get_111B_surface(monolayers, vacuum, constrain_layers = 0)
  get_111_surface("B", monolayers, vacuum, constrain_layers)
end

#get_112_surface(monolayers, vacuum = 0, constrain_layers = 0) ⇒ Object

return a unit cell for a slab of 112 specify the number of atomic monolayers and the vacuum thickness in angstrom



222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# File 'lib/aims/zinc_blende.rb', line 222

def get_112_surface(monolayers, vacuum=0, constrain_layers = 0)
  atom1 = Atom.new(0,0,0,self.cation)
  atom2 = Atom.new(self.lattice_const*sqrt(3)/2, 0, 0, self.anion)
  
  v1 = Vector[sqrt(3), 0, 0]*self.lattice_const
  v2 = Vector[0, sqrt(2)/2, 0]*self.lattice_const
  v3 = Vector[1/sqrt(3), 1/(sqrt(3)*2), -1/(sqrt(3)*2)]*self.lattice_const
  
  millerX = Vector[1, 1, -2];
  millerY = Vector[-1, 1, 0];
  millerZ = Vector[-1, -1, -1]

  # The unit cell
   zb = Geometry.new([atom1, atom2], [v1, v2, v3])
   zb.set_miller_indices(millerX, millerY, millerZ)

   # Repeat the unit cell
   zb = zb.repeat(1,1,monolayers)


   if 0 < vacuum
     # Add vacuum
     monolayerSep = v3[2]
     zb.lattice_vectors[2] = Vector[0, 0, (monolayers*monolayerSep).abs + vacuum.to_f]
     # Move everything into a nice tidy unit cell. 
     zb = zb.correct
   end

   # # Constrain the bottom 2 layers
   # zb.atoms.each{|a|
   #   if (a.z < monolayerSep*2)
   #     a.constrain = ".true."
   #   end
   # }


   # Return the completed unit cell
   return zb
end

#get_bulkObject

Return the traditional unit cell of bulk zinc blende



29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# File 'lib/aims/zinc_blende.rb', line 29

def get_bulk
  b = 0.25*self.lattice_const
  a1 = Atom.new(0, 0, 0, self.cation)
  a2 = Atom.new(b, b, b, self.anion)
  
  v1 = Vector[0.5, 0.5, 0.0]*self.lattice_const
  v2 = Vector[0.5, 0.0, 0.5]*self.lattice_const
  v3 = Vector[0.0, 0.5, 0.5]*self.lattice_const
  zb = Geometry.new([a1, a2], [v1, v2, v3])
  
  millerx = [1, 0, 0]
  millery = [0, 1, 0]
  millerz = [0, 0, 1]
  
  zb.set_miller_indices(millerx, millery, millerz)
  
  return zb
end