Class: Aims::Geometry
- Inherits:
-
Object
- Object
- Aims::Geometry
- Includes:
- Vectorize, Enumerable
- Defined in:
- lib/aims/geometry.rb
Overview
Geometry is one of the core classes in the Aims module. It is a container class for Atoms and can optionally include lattice vectors for periodic systems.
There are a number of utility methods for manipulating the geometry such as Geometry#rotate, Geometry#copy, Geometry#repeat, and Geometry#displace
It is possible to define a collection of clip_planes using add_plane, add_plane_miller, or add_plane_cartesian to selectively hide atoms from the geometry. The planes can be defined in the coordinate system of the geometry or using miller indices if the miller index of the x and y axes have been specified with set_miller_indices.
Once the miller indices have been defined, Geometry#align_x can be used to rotate the Geometry about the z-axis and align the x-axis with a given miller index.
Direct Known Subclasses
Instance Attribute Summary collapse
-
#bonds ⇒ Object
An array of Aims::Bond objects calculated when the Geometry is defined.
-
#lattice_vectors ⇒ Object
A three element array of lattice vectors for periodic systems.
Instance Method Summary collapse
-
#<<(aGeometry) ⇒ Object
Concatenate the atoms from another unit cell to this unit cell.
-
#[](index) ⇒ Object
Return the Atom at the given index.
-
#add_plane(aPlane, recache = true) ⇒ Object
Add a clip Plane to the unit cell recache the visible atoms if called with recache = true (the Default).
-
#add_plane_cartesian(nx, ny, nz, x, y, z) ⇒ Object
Add a clipping plane defined by the outward normal (nx,ny,nz) and a point on the plane (x,y,z) Only points behind the plane will be kept.
-
#add_plane_miller(h, k, l, x, y, z) ⇒ Object
Add a clipping plane defined by the outward normal (h,k,l) and a point on the plane (x,y,z) Only points behind the plane will be kept.
-
#align_x(h, k, l) ⇒ Object
Rotate the atoms about the z-axis so that the vector given by the miller index [h,k,l] is aligned with the cartesian unit vector [1,0,0] The vector [h,k,l] must be orthogonal to the defined miller index of the z-direction.
-
#atoms(visibility = :visibleOnly) ⇒ Object
Return the atoms in this unit cell.
-
#atoms=(listOfAtoms) ⇒ Object
Define the atoms in basis of this Unit Cell.
-
#bounding_box(visible_only = true) ⇒ Object
Return a two element array contaiing two artificial Aims::Atom objects whose coordinates represent the lower-left and upper-right corners of the Geometry’s bounding box.
-
#cartesian_from_miller(h, k, l) ⇒ Object
Given a miller index (h,k,l), return a vector in cartesian coordinates pointing in that direction.
-
#center(visible_only = true) ⇒ Object
Return an Atom whose coordinates are the center of the unit-cell.
-
#clear_planes ⇒ Object
Clear the array of clip planes.
-
#copy ⇒ Object
Return a new Aims#Geometry that is a deep copy of this geometry.
-
#correct ⇒ Object
Move all atoms inside the primitive volume defined by the six planes of the lattice vectors.
-
#delta(aCell) ⇒ Object
Find the difference between this cell and another cell Return a cell with Pseudo-Atoms whose positions are really the differences.
-
#displace(x, y, z) ⇒ Object
Return a new unit cell with all the atoms displaced by the amount x,y,z.
-
#each ⇒ Object
Yield to each atom in the unit cell.
-
#empty? ⇒ Boolean
The geometry is empty if there are no atoms.
-
#format_geometry_in ⇒ Object
Return a string formatted in the Aims geometry.in format.
-
#format_xyz ⇒ Object
return a string in xyz format.
-
#initialize(atoms, vectors = nil, dont_make_bonds = false) ⇒ Geometry
constructor
Initialize a Geometry with a list of atoms, and an optional list of lattice vectors.
-
#make_bonds(bond_length = 4.0) ⇒ Object
Generate and cache bonds for this geometry.
-
#miller_from_cartesian(x, y, z) ⇒ Object
Given a vector (x,y,z) in cartesian coordinates, return the miller-index corresponding to that vector’s direction.
-
#recache_visible_atoms(makeBonds = false) ⇒ Object
Recompute the atoms that are behind all the clip planes Atoms that are in front of any clip-plane are considered invisible.
-
#remove_atom(atom) ⇒ Object
Remove the specified atom from the unit cell.
-
#remove_plane(aPlane) ⇒ Object
Remove a specific clip plane.
-
#repeat(nx = 1, ny = 1, nz = 1) ⇒ Object
Repeat a unit cell nx,ny,nz times in the directions of the lattice vectors.
-
#rotate(alt, az) ⇒ Object
Rotate the geometry in 3 dimensions.
-
#set_miller_indices(x, y, z = nil) ⇒ Object
Define the [h, k, l] vectors for each cartesian direction x, y, and z There must be at least two vectors provided, and they must be orthogonal The z vector, if provided, must also be orthogonal.
-
#size ⇒ Object
Return the number of atoms in this unit cell.
-
#to_s ⇒ Object
Print all the atoms joined by a newline.
Methods included from Vectorize
Constructor Details
#initialize(atoms, vectors = nil, dont_make_bonds = false) ⇒ Geometry
Initialize a Geometry with a list of atoms, and an optional list of lattice vectors
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
# File 'lib/aims/geometry.rb', line 49 def initialize(atoms, vectors = nil, dont_make_bonds = false) # Do some basic validation unless atoms.is_a? Array raise "Atoms must be an array!" end if atoms.empty? raise "Atoms array is empty!" end atoms.each{|a| unless a.is_a? Atom raise "Atoms array contains invalid object type #{a.class}!" end } # Ok. I'm satisfied self.atoms = atoms # Now check the lattice vectors if vectors self.lattice_vectors = vectors.collect{|v| if v.is_a? Vector and v.size == 3 v elsif v.is_a? Array and v.size == 3 Vector.elements(v) else raise "Invalid lattice vector" end } unless self.lattice_vectors.size == 3 raise "There must be 3 lattice vectors, not #{self.lattice_vectors.size}." end end @clip_planes = [] make_bonds unless dont_make_bonds end |
Instance Attribute Details
#bonds ⇒ Object
An array of Aims::Bond objects calculated when the Geometry is defined.
27 28 29 |
# File 'lib/aims/geometry.rb', line 27 def bonds @bonds end |
#lattice_vectors ⇒ Object
A three element array of lattice vectors for periodic systems
24 25 26 |
# File 'lib/aims/geometry.rb', line 24 def lattice_vectors @lattice_vectors end |
Instance Method Details
#<<(aGeometry) ⇒ Object
Concatenate the atoms from another unit cell to this unit cell. Currently does no validation on lattice vectors on miller vectors
425 426 427 428 429 |
# File 'lib/aims/geometry.rb', line 425 def <<(aGeometry) self.atoms.concat(aGeometry.atoms) self.make_bonds return self end |
#[](index) ⇒ Object
Return the Atom at the given index
375 376 377 |
# File 'lib/aims/geometry.rb', line 375 def [](index) atoms[index] end |
#add_plane(aPlane, recache = true) ⇒ Object
Add a clip Plane to the unit cell recache the visible atoms if called with recache = true (the Default)
131 132 133 134 |
# File 'lib/aims/geometry.rb', line 131 def add_plane(aPlane, recache = true) self.clip_planes << aPlane recache_visible_atoms if recache end |
#add_plane_cartesian(nx, ny, nz, x, y, z) ⇒ Object
Add a clipping plane defined by the outward normal (nx,ny,nz) and a point on the plane (x,y,z) Only points behind the plane will be kept. Points in front of the plane will be invisible. They are not really gone, but can be returned by moving or removing the plane
151 152 153 |
# File 'lib/aims/geometry.rb', line 151 def add_plane_cartesian(nx, ny, nz, x, y, z) add_plane(Plane.new(nx, ny, nz, x, y, z), true) end |
#add_plane_miller(h, k, l, x, y, z) ⇒ Object
Add a clipping plane defined by the outward normal (h,k,l) and a point on the plane (x,y,z) Only points behind the plane will be kept. Points in front of the plane will be invisible. They are not really gone, but can be returned by moving or removing the plane
141 142 143 144 |
# File 'lib/aims/geometry.rb', line 141 def add_plane_miller(h,k,l,x,y,z) normal = self.cartesian_from_miller(h, k, l) self.add_plane_cartesian(normal[0], normal[1], normal[2], x, y, z) end |
#align_x(h, k, l) ⇒ Object
Rotate the atoms about the z-axis so that the vector given by the miller index [h,k,l] is aligned with the cartesian unit vector [1,0,0] The vector [h,k,l] must be orthogonal to the defined miller index of the z-direction
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
# File 'lib/aims/geometry.rb', line 199 def align_x(h,k,l) millerZ = self.cart_to_miller.column(2) unless 0 == dot([h,k,l], millerZ) raise "Specified vector [#{[h,k,l].join(',')}] is not orthogonal to z-axis [#{millerZ.to_a.join(',')}]" end # Define the current x axis and the new x-axis millerX = self.cart_to_miller.column(0) newX = Vector[h,k,l] # Find the angle between the current x direction and the new x-direction angle = acos(dot(newX*(1/newX.r), millerX*(1/millerX.r)))*180/Math::PI #Make the rotation in azimuth self.rotate(0, angle) end |
#atoms(visibility = :visibleOnly) ⇒ Object
Return the atoms in this unit cell. By default returns only the visible atoms, but this method will return all of the atoms if called with (visibleOnly = false)
102 103 104 105 106 107 108 |
# File 'lib/aims/geometry.rb', line 102 def atoms(visibility = :visibleOnly) if (visibility == :visibleOnly) and (0 < @clip_planes.size) @visibleAtoms else @atoms end end |
#atoms=(listOfAtoms) ⇒ Object
Define the atoms in basis of this Unit Cell
94 95 96 97 |
# File 'lib/aims/geometry.rb', line 94 def atoms=(listOfAtoms) @atoms = listOfAtoms recache_visible_atoms end |
#bounding_box(visible_only = true) ⇒ Object
Return a two element array contaiing two artificial Aims::Atom objects whose coordinates represent the lower-left and upper-right corners of the Geometry’s bounding box.
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
# File 'lib/aims/geometry.rb', line 318 def bounding_box(visible_only = true) maxX = atoms(visible_only).first.x maxY = atoms(visible_only).first.y maxZ = atoms(visible_only).first.z minX = maxX minY = maxY minZ = maxZ atoms(visible_only).each{|a| if a.x > maxX maxX = a.x elsif a.x < minX minX = a.x end if a.y > maxY maxY = a.y elsif a.y < minY minY = a.y end if a.z > maxZ maxZ = a.z elsif a.z < minZ minZ = a.z end } [Atom.new(maxX, maxY, maxZ), Atom.new(minX, minY, minZ)] end |
#cartesian_from_miller(h, k, l) ⇒ Object
Given a miller index (h,k,l), return a vector in cartesian coordinates pointing in that direction
229 230 231 232 233 234 235 236 |
# File 'lib/aims/geometry.rb', line 229 def cartesian_from_miller(h, k, l) if self.miller_to_cart self.miller_to_cart*Vector[h, k, l] else nil end end |
#center(visible_only = true) ⇒ Object
Return an Atom whose coordinates are the center of the unit-cell.
350 351 352 353 354 355 356 |
# File 'lib/aims/geometry.rb', line 350 def center(visible_only = true) bounds = bounding_box(visible_only) x = (bounds[0].x + bounds[1].x)/2.0 y = (bounds[0].y + bounds[1].y)/2.0 z = (bounds[0].z + bounds[1].z)/2.0 return Atom.new(x,y,z) end |
#clear_planes ⇒ Object
Clear the array of clip planes
156 157 158 159 |
# File 'lib/aims/geometry.rb', line 156 def clear_planes self.clip_planes.clear recache_visible_atoms end |
#copy ⇒ Object
Return a new Aims#Geometry that is a deep copy of this geometry.
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
# File 'lib/aims/geometry.rb', line 293 def copy newAtoms = [] newVecs = [] @atoms.each{|a| newAtoms << a.copy } @lattice_vectors.each{|v| newVecs << v*1 } uc = Geometry.new(newAtoms, newVecs) uc.clip_planes = self.clip_planes uc.miller_to_cart = self.miller_to_cart uc.cart_to_miller = self.cart_to_miller uc.recache_visible_atoms return uc end |
#correct ⇒ Object
Move all atoms inside the primitive volume defined by the six planes of the lattice vectors
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
# File 'lib/aims/geometry.rb', line 481 def correct # Hash for storing bounding planes and the out-of-plane vector # by which each atom will be displaced to move it into the primitive volume # key = bounding plane # value = out-of-plane lattice vector used to displace atoms planes_vecs = {} # Define the primitive volume as six planes by # finding the normal to each pair of lattice vectors # and making a plane with this normal that includes # 1. The point at the head of the third lattice vector # and pointing in the positive direction # # 2. The point at the tail of the third lattice vector # and pointing in the negative direction # (0..2).each do |i| out_vector = lattice_vectors[i] # The out of plane vector plane_vectors = lattice_vectors.reject{|v| v == out_vector} # The in plane vectors norm = cross(plane_vectors[0], plane_vectors[1]) # if the norm has a component in the direction of the out of plane vector # then use the head of the out-of-plane vector as the intersection point # otherwise use the tail (the origin) if 0 < dot(norm, out_vector) # First plane is in direction of norm and intersects head # Displace vector is +1 if plane intersects tail and -1 if plane intersects head. planes_vecs[Plane.new(norm[0], norm[1], norm[2], out_vector[0], out_vector[1], out_vector[2])] = out_vector*(-1) # Second plane is opposite direction of norm and intersects tail planes_vecs[Plane.new(-norm[0], -norm[1], -norm[2], 0, 0, 0)] = out_vector*1 else # First plane is in opposite direction of norm and intersects head planes_vecs[Plane.new(-norm[0], -norm[1], -norm[2], out_vector[0], out_vector[1], out_vector[2])] = out_vector*(-1) # Second plane is in direction of norm and intersects tail planes_vecs[Plane.new(norm[0], norm[1], norm[2], 0, 0, 0)] = out_vector*1 end end # Make a coyp of the unit cell new_unit_cell = self.copy # Move each atom behind all the planes new_unit_cell.atoms(false).each do |atom| planes_vecs.each_pair do |p, v| if p.distance_to_point(0,0,0) == 0 # If the plane intersects the origin then # move atoms not on the plane (inequality) while p.distance_to_point(atom.x, atom.y, atom.z) > 0 atom.displace!(v[0], v[1], v[2]) end else # Move atoms that lie on the plane if the plane doesn't intersect the origin while p.distance_to_point(atom.x, atom.y, atom.z) >= 0 atom.displace!(v[0], v[1], v[2]) end end end end new_unit_cell.atoms.uniq! new_unit_cell.make_bonds return new_unit_cell end |
#delta(aCell) ⇒ Object
Find the difference between this cell and another cell Return a cell with Pseudo-Atoms whose positions are really the differences
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
# File 'lib/aims/geometry.rb', line 460 def delta(aCell) raise "Cells do not have the same number of atoms" unless self.atoms.size == aCell.atoms.size pseudo_atoms = [] self.atoms.size.times {|i| a1 = self.atoms[i] a2 = aCell.atoms[i] raise "Species do not match" unless a1.species == a2.species a = Atom.new a.species = a1.species a.x = a1.x - a2.x a.y = a1.y - a2.y a.z = a1.z - a2.z pseudo_atoms << a } Geometry.new(pseudo_atoms) end |
#displace(x, y, z) ⇒ Object
Return a new unit cell with all the atoms displaced by the amount x,y,z
380 381 382 383 384 385 |
# File 'lib/aims/geometry.rb', line 380 def displace(x,y,z) Geometry.new(atoms(:all).collect{|a| a.displace(x,y,z) }, self.lattice_vectors) #TODO copy miller indices end |
#each ⇒ Object
Yield to each atom in the unit cell
359 360 361 362 363 |
# File 'lib/aims/geometry.rb', line 359 def each self.atoms.each{|a| yield a } end |
#empty? ⇒ Boolean
The geometry is empty if there are no atoms.
89 90 91 |
# File 'lib/aims/geometry.rb', line 89 def empty? @atoms.empty? end |
#format_geometry_in ⇒ Object
Return a string formatted in the Aims geometry.in format.
437 438 439 440 441 442 443 444 445 446 |
# File 'lib/aims/geometry.rb', line 437 def format_geometry_in output = "" if self.lattice_vectors output << self.lattice_vectors.collect{|v| "lattice_vector #{v[0]} #{v[1]} #{v[2]}"}.join("\n") output << "\n" end output << self.atoms.collect{|a| a.format_geometry_in}.join("\n") output end |
#format_xyz ⇒ Object
return a string in xyz format
449 450 451 452 453 454 455 456 |
# File 'lib/aims/geometry.rb', line 449 def format_xyz output = self.atoms.size.to_s + "\n" output << "Aims Geometry \n" self.atoms.each{ |a| output << [a.species, a.x.to_s, a.y.to_s, a.z.to_s].join("\t") + "\n" } output end |
#make_bonds(bond_length = 4.0) ⇒ Object
Generate and cache bonds for this geometry. A bond will be generated for every pair of atoms closer than bond_length
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
# File 'lib/aims/geometry.rb', line 112 def make_bonds(bond_length = 4.0) # initialize an empty array self.bonds = Array.new # Make bonds between all atoms stack = atoms.dup atom1 = stack.pop while (not stack.empty?) stack.each{|atom2| b = Bond.new(atom1, atom2) self.bonds << b if b.length < bond_length } atom1 = stack.pop end end |
#miller_from_cartesian(x, y, z) ⇒ Object
Given a vector (x,y,z) in cartesian coordinates, return the miller-index corresponding to that vector’s direction
219 220 221 222 223 224 225 |
# File 'lib/aims/geometry.rb', line 219 def miller_from_cartesian(x, y, z) if self.cart_to_miller self.cart_to_miller*Vector[x, y, z] else nil end end |
#recache_visible_atoms(makeBonds = false) ⇒ Object
Recompute the atoms that are behind all the clip planes Atoms that are in front of any clip-plane are considered invisible.
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
# File 'lib/aims/geometry.rb', line 240 def recache_visible_atoms(makeBonds = false) plane_count = (@clip_planes ? @clip_planes.length : 0) return if plane_count == 0 if @visibleAtoms @visibleAtoms.clear else @visibleAtoms = [] end @atoms.each{|a| i = plane_count @clip_planes.each{|p| i = i-1 if 0 >= p.distance_to_point(a.x, a.y, a.z) } @visibleAtoms << a if i == 0 } make_bonds if makeBonds end |
#remove_atom(atom) ⇒ Object
Remove the specified atom from the unit cell
366 367 368 369 370 371 372 |
# File 'lib/aims/geometry.rb', line 366 def remove_atom(atom) atoms.reject!{|a| a.id == atom.id } # Force a rehash of nearest-neighbor tree @tree = nil end |
#remove_plane(aPlane) ⇒ Object
Remove a specific clip plane
162 163 164 165 |
# File 'lib/aims/geometry.rb', line 162 def remove_plane(aPlane) self.clip_planes.reject!{|p| p == aPlane} recache_visible_atoms end |
#repeat(nx = 1, ny = 1, nz = 1) ⇒ Object
Repeat a unit cell nx,ny,nz times in the directions of the lattice vectors. Negative values of nx,ny or nz results in displacement in the negative direction of the lattice vectors
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
# File 'lib/aims/geometry.rb', line 391 def repeat(nx=1, ny=1, nz=1) raise "Not a periodic system." if self.lattice_vectors.nil? u = self.copy v1 = self.lattice_vectors[0] v2 = self.lattice_vectors[1] v3 = self.lattice_vectors[2] nx_sign = (0 < nx) ? 1 : -1 ny_sign = (0 < ny) ? 1 : -1 nz_sign = (0 < nz) ? 1 : -1 new_atoms = [] nx.to_i.abs.times do |i| ny.to_i.abs.times do |j| nz.to_i.abs.times do |k| new_atoms << self.displace(nx_sign*i*v1[0] + ny_sign*j*v2[0] + nz_sign*k*v3[0], nx_sign*i*v1[1] + ny_sign*j*v2[1] + nz_sign*k*v3[1], nx_sign*i*v1[2] + ny_sign*j*v2[2] + nz_sign*k*v3[2]).atoms end end end u.atoms = new_atoms.flatten u.lattice_vectors = [Vector[nx.abs*v1[0], nx.abs*v1[1], nx.abs*v1[2]], Vector[ny.abs*v2[0], ny.abs*v2[1], ny.abs*v2[2]], Vector[nz.abs*v3[0], nz.abs*v3[1], nz.abs*v3[2]]] u.make_bonds return u end |
#rotate(alt, az) ⇒ Object
Rotate the geometry in 3 dimensions. The rotation is first about the x-axis then about the z-axis.
-
az
The azimuthal rotation in degrees about the z-axis -
alt
The rotation in altitude in degrees about the x-axis
Returns a new Aims#Geometry object.
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# File 'lib/aims/geometry.rb', line 267 def rotate(alt, az) altrad = Math::PI/180*alt azrad = Math::PI/180*az sinalt = Math::sin(altrad) cosalt = Math::cos(altrad) sinaz = Math::sin(azrad) cosaz = Math::cos(azrad) mat1 = Matrix[[cosaz, -sinaz, 0], [sinaz, cosaz, 0], [0, 0, 1]] mat2 = Matrix[[1.0, 0.0, 0.0], [0.0, cosalt, -sinalt], [0.0, sinalt, cosalt]] mat = mat1*mat2 newatoms = atoms.collect{|a| a.rotate(mat) } newvectors = lattice_vectors.collect{|v| mat*v } uc = Geometry.new(newatoms, newvectors) uc.cart_to_miller = mat*self.cart_to_miller uc.miller_to_cart = uc.cart_to_miller.inverse return uc end |
#set_miller_indices(x, y, z = nil) ⇒ Object
Define the [h, k, l] vectors for each cartesian direction x, y, and z There must be at least two vectors provided, and they must be orthogonal The z vector, if provided, must also be orthogonal. If it is not provided it will be calculated as the cross product of x and y
These vectors will populate a matrix that for calculation of the miller indices for any arbitrary vector in cartesian space, and the calculation of the cartesian space vector for any arbitrary miller index See miller_from_cartesion and cartesian_from_miller for more details.
The default miller indices are parallel to the cartesian indices. That is the default x-axes points in (100), y points along (010) and z points along (001)
180 181 182 183 184 185 186 187 188 189 190 191 192 |
# File 'lib/aims/geometry.rb', line 180 def set_miller_indices(x, y, z=nil) raise "Vectors must be orthogonal" unless 0 == dot(x,y) if z raise "Vectors must be orthogonal" unless 0 == dot(x,z) else z = cross(x, y) end self.cart_to_miller = Matrix[[x[0], y[0], z[0]], [x[1], y[1], z[1]], [x[2], y[2], z[2]]] self.miller_to_cart = cart_to_miller.inverse return nil end |
#size ⇒ Object
Return the number of atoms in this unit cell.
311 312 313 |
# File 'lib/aims/geometry.rb', line 311 def size atoms.size end |
#to_s ⇒ Object
Print all the atoms joined by a newline
432 433 434 |
# File 'lib/aims/geometry.rb', line 432 def to_s self.atoms.collect{|a| a.to_s}.join("\n") end |