Class: Aidp::Execute::PromptEvaluator
- Inherits:
-
Object
- Object
- Aidp::Execute::PromptEvaluator
- Defined in:
- lib/aidp/execute/prompt_evaluator.rb
Overview
Evaluates prompt effectiveness using ZFC after multiple iterations
FIX for issue #391: When the work loop reaches 10+ iterations without completion, this evaluator assesses prompt quality and suggests improvements.
Uses Zero Framework Cognition (ZFC) to analyze:
-
Whether the prompt clearly defines completion criteria
-
If task breakdown instructions are adequate
-
Whether the agent has sufficient context
-
If there are blockers preventing progress
Constant Summary collapse
- EVALUATION_ITERATION_THRESHOLD =
Threshold for triggering evaluation
10- EVALUATION_INTERVAL =
Re-evaluate periodically after threshold
5
Instance Attribute Summary collapse
-
#ai_decision_engine ⇒ Object
readonly
Expose for testability.
Instance Method Summary collapse
-
#evaluate(prompt_content:, iteration_count:, task_summary:, recent_failures:, step_name: nil) ⇒ Hash
Evaluate prompt effectiveness.
-
#generate_template_improvements(evaluation_result:, original_template:) ⇒ Hash
Generate improvement recommendations for the prompt template Used for AGD pattern - generating improved templates based on evaluation.
-
#initialize(config, ai_decision_engine: nil) ⇒ PromptEvaluator
constructor
A new instance of PromptEvaluator.
-
#safely_build_ai_decision_engine ⇒ Object
Safely build AIDecisionEngine, returning nil if config doesn’t support it This allows tests with mock configs to work without AI calls.
-
#should_evaluate?(iteration_count) ⇒ Boolean
Check if evaluation should be triggered based on iteration count.
Constructor Details
#initialize(config, ai_decision_engine: nil) ⇒ PromptEvaluator
38 39 40 41 |
# File 'lib/aidp/execute/prompt_evaluator.rb', line 38 def initialize(config, ai_decision_engine: nil) @config = config @ai_decision_engine = ai_decision_engine || safely_build_ai_decision_engine end |
Instance Attribute Details
#ai_decision_engine ⇒ Object (readonly)
Expose for testability
36 37 38 |
# File 'lib/aidp/execute/prompt_evaluator.rb', line 36 def ai_decision_engine @ai_decision_engine end |
Instance Method Details
#evaluate(prompt_content:, iteration_count:, task_summary:, recent_failures:, step_name: nil) ⇒ Hash
Evaluate prompt effectiveness
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
# File 'lib/aidp/execute/prompt_evaluator.rb', line 73 def evaluate(prompt_content:, iteration_count:, task_summary:, recent_failures:, step_name: nil) Aidp.log_debug("prompt_evaluator", "starting_evaluation", iteration: iteration_count, step: step_name, prompt_size: prompt_content&.length || 0) # When AI decision engine is unavailable (e.g., in tests with mock configs), # return a neutral result that doesn't trigger feedback appending unless @ai_decision_engine Aidp.log_debug("prompt_evaluator", "skipping_evaluation_no_ai_engine") return { effective: true, # Assume effective to avoid unnecessary feedback issues: [], suggestions: [], likely_blockers: [], recommended_actions: [], confidence: 0.0, skipped: true, skip_reason: "AI decision engine not available" } end prompt = build_evaluation_prompt( prompt_content: prompt_content, iteration_count: iteration_count, task_summary: task_summary, recent_failures: recent_failures ) schema = { type: "object", properties: { effective: { type: "boolean", description: "True if the prompt is likely to lead to completion within a few more iterations" }, issues: { type: "array", items: {type: "string"}, description: "Specific problems identified with the current prompt" }, suggestions: { type: "array", items: {type: "string"}, description: "Actionable suggestions to improve prompt effectiveness" }, likely_blockers: { type: "array", items: {type: "string"}, description: "Potential blockers preventing progress" }, recommended_actions: { type: "array", items: { type: "object", properties: { action: {type: "string"}, priority: {type: "string", enum: ["high", "medium", "low"]}, rationale: {type: "string"} } }, description: "Specific actions to take, prioritized" }, confidence: { type: "number", minimum: 0.0, maximum: 1.0, description: "Confidence in this assessment" } }, required: ["effective", "issues", "suggestions", "confidence"] } begin result = @ai_decision_engine.decide( :prompt_evaluation, context: {prompt: prompt}, schema: schema, tier: :mini, cache_ttl: nil # Each evaluation is context-specific ) Aidp.log_info("prompt_evaluator", "evaluation_complete", iteration: iteration_count, effective: result[:effective], issue_count: result[:issues]&.size || 0, confidence: result[:confidence]) result rescue => e Aidp.log_error("prompt_evaluator", "evaluation_failed", error: e., error_class: e.class.name) build_fallback_result("Evaluation failed: #{e.message}") end end |
#generate_template_improvements(evaluation_result:, original_template:) ⇒ Hash
Generate improvement recommendations for the prompt template Used for AGD pattern - generating improved templates based on evaluation
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
# File 'lib/aidp/execute/prompt_evaluator.rb', line 176 def generate_template_improvements(evaluation_result:, original_template:) return nil unless @ai_decision_engine Aidp.log_debug("prompt_evaluator", "generating_template_improvements", issue_count: evaluation_result[:issues]&.size || 0) prompt = build_improvement_prompt(evaluation_result, original_template) schema = { type: "object", properties: { improved_sections: { type: "array", items: { type: "object", properties: { section_name: {type: "string"}, original: {type: "string"}, improved: {type: "string"}, rationale: {type: "string"} } } }, additional_sections: { type: "array", items: { type: "object", properties: { section_name: {type: "string"}, content: {type: "string"}, rationale: {type: "string"} } } }, completion_criteria_improvements: { type: "array", items: {type: "string"}, description: "Specific improvements to completion criteria definitions" } }, required: ["improved_sections", "completion_criteria_improvements"] } @ai_decision_engine.decide( :template_improvement, context: {prompt: prompt}, schema: schema, tier: :standard, # Use standard tier for more thoughtful improvements cache_ttl: nil ) rescue => e Aidp.log_error("prompt_evaluator", "template_improvement_failed", error: e.) nil end |
#safely_build_ai_decision_engine ⇒ Object
Safely build AIDecisionEngine, returning nil if config doesn’t support it This allows tests with mock configs to work without AI calls
45 46 47 48 49 50 51 52 53 54 |
# File 'lib/aidp/execute/prompt_evaluator.rb', line 45 def safely_build_ai_decision_engine # Check if config supports the methods AIDecisionEngine needs return nil unless @config.respond_to?(:default_provider) build_default_ai_decision_engine rescue => e Aidp.log_debug("prompt_evaluator", "skipping_ai_decision_engine", reason: e.) nil end |
#should_evaluate?(iteration_count) ⇒ Boolean
Check if evaluation should be triggered based on iteration count
59 60 61 62 63 64 |
# File 'lib/aidp/execute/prompt_evaluator.rb', line 59 def should_evaluate?(iteration_count) return false unless iteration_count >= EVALUATION_ITERATION_THRESHOLD # Evaluate at threshold and every EVALUATION_INTERVAL after (iteration_count - EVALUATION_ITERATION_THRESHOLD) % EVALUATION_INTERVAL == 0 end |