Class: Agentic::Learning::StrategyOptimizer
- Inherits:
-
Object
- Object
- Agentic::Learning::StrategyOptimizer
- Defined in:
- lib/agentic/learning/strategy_optimizer.rb
Overview
StrategyOptimizer improves execution strategies based on historical performance data. It uses insights from the PatternRecognizer to automatically generate optimized strategies for tasks, agents, and plans.
Instance Method Summary collapse
-
#apply_optimizations(target, registry) ⇒ Hash
Apply learned optimizations to existing configurations.
-
#generate_performance_report(agent_type) ⇒ Hash
Generate a performance report for a specific agent type.
-
#initialize(options = {}) ⇒ StrategyOptimizer
constructor
Initialize a new StrategyOptimizer.
-
#optimize_llm_parameters(original_params, agent_type, options = {}) ⇒ Hash
Optimize LLM parameters based on historical performance.
-
#optimize_prompt_template(original_template, agent_type, options = {}) ⇒ Hash
Optimize a prompt template based on historical performance.
-
#optimize_task_sequence(original_sequence, plan_type, options = {}) ⇒ Hash
Optimize task sequence based on historical performance.
Constructor Details
#initialize(options = {}) ⇒ StrategyOptimizer
Initialize a new StrategyOptimizer
32 33 34 35 36 37 38 39 40 41 |
# File 'lib/agentic/learning/strategy_optimizer.rb', line 32 def initialize( = {}) @logger = [:logger] || Agentic.logger @pattern_recognizer = [:pattern_recognizer] || raise(ArgumentError, "pattern_recognizer is required") @history_store = [:history_store] || raise(ArgumentError, "history_store is required") @llm_client = [:llm_client] @optimization_interval_hours = [:optimization_interval_hours] || 24 @auto_apply_optimizations = .fetch(:auto_apply_optimizations, false) @optimization_cache = {} @last_optimization = {} end |
Instance Method Details
#apply_optimizations(target, registry) ⇒ Hash
Apply learned optimizations to existing configurations
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
# File 'lib/agentic/learning/strategy_optimizer.rb', line 188 def apply_optimizations(target, registry) results = {} case target when :prompts registry.each do |key, template| agent_type = extract_agent_type_from_key(key) next unless agent_type result = optimize_prompt_template(template, agent_type) results[key] = result if result[:optimized] && @auto_apply_optimizations # Logic to apply optimization to registry would go here @logger.info("Auto-applied optimized prompt for #{key}") end end when :parameters registry.each do |key, params| agent_type = extract_agent_type_from_key(key) next unless agent_type result = optimize_llm_parameters(params, agent_type) results[key] = result if result[:optimized] && @auto_apply_optimizations # Logic to apply optimization to registry would go here @logger.info("Auto-applied optimized parameters for #{key}") end end when :sequences registry.each do |key, sequence| plan_type = key.to_s result = optimize_task_sequence(sequence, plan_type) results[key] = result if result[:optimized] && @auto_apply_optimizations # Logic to apply optimization to registry would go here @logger.info("Auto-applied optimized sequence for #{key}") end end end results end |
#generate_performance_report(agent_type) ⇒ Hash
Generate a performance report for a specific agent type
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
# File 'lib/agentic/learning/strategy_optimizer.rb', line 241 def generate_performance_report(agent_type) performance = @pattern_recognizer.analyze_agent_performance(agent_type) if performance[:insufficient_data] return { agent_type: agent_type, status: :insufficient_data, message: "Not enough execution data to generate a meaningful report" } end # Get recommendations recommendations = @pattern_recognizer.recommend_optimizations(agent_type) { agent_type: agent_type, status: :complete, timestamp: Time.now.iso8601, metrics: { success_rate: performance[:success_rate][:overall], trend: performance[:success_rate][:trend], sample_size: performance[:success_rate][:sample_size] }, performance_trends: performance[:performance_trends], failure_patterns: performance[:failure_patterns], recommendations: recommendations } end |
#optimize_llm_parameters(original_params, agent_type, options = {}) ⇒ Hash
Optimize LLM parameters based on historical performance
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
# File 'lib/agentic/learning/strategy_optimizer.rb', line 99 def optimize_llm_parameters(original_params, agent_type, = {}) cache_key = "params:#{agent_type}:#{Digest::MD5.hexdigest(original_params.to_s)}" # Check cache and optimization interval unless [:force] if @optimization_cache[cache_key] && @last_optimization[cache_key] && @last_optimization[cache_key] > Time.now - (@optimization_interval_hours * 3600) return @optimization_cache[cache_key] end end # Get performance data performance = @pattern_recognizer.analyze_agent_performance(agent_type) if performance[:insufficient_data] @logger.info("Insufficient data to optimize LLM parameters for #{agent_type}") return { optimized: false, reason: "Insufficient performance data", original_params: original_params, improved_params: original_params.dup } end # Generate optimization optimization = generate_optimized_parameters(original_params, agent_type, performance, ) # Cache result @optimization_cache[cache_key] = optimization @last_optimization[cache_key] = Time.now optimization end |
#optimize_prompt_template(original_template, agent_type, options = {}) ⇒ Hash
Optimize a prompt template based on historical performance
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
# File 'lib/agentic/learning/strategy_optimizer.rb', line 52 def optimize_prompt_template(original_template, agent_type, = {}) cache_key = "prompt:#{agent_type}:#{Digest::MD5.hexdigest(original_template)}" # Check cache and optimization interval unless [:force] if @optimization_cache[cache_key] && @last_optimization[cache_key] && @last_optimization[cache_key] > Time.now - (@optimization_interval_hours * 3600) return @optimization_cache[cache_key] end end # Get performance data performance = @pattern_recognizer.analyze_agent_performance(agent_type) if performance[:insufficient_data] @logger.info("Insufficient data to optimize prompt for #{agent_type}") return { optimized: false, reason: "Insufficient performance data", original_template: original_template, improved_template: original_template } end # Generate optimization optimization = if @llm_client generate_optimized_prompt_with_llm(original_template, agent_type, performance, ) else generate_optimized_prompt_heuristic(original_template, agent_type, performance, ) end # Cache result @optimization_cache[cache_key] = optimization @last_optimization[cache_key] = Time.now optimization end |
#optimize_task_sequence(original_sequence, plan_type, options = {}) ⇒ Hash
Optimize task sequence based on historical performance
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# File 'lib/agentic/learning/strategy_optimizer.rb', line 141 def optimize_task_sequence(original_sequence, plan_type, = {}) cache_key = "sequence:#{plan_type}:#{Digest::MD5.hexdigest(original_sequence.to_s)}" # Check cache and optimization interval unless [:force] if @optimization_cache[cache_key] && @last_optimization[cache_key] && @last_optimization[cache_key] > Time.now - (@optimization_interval_hours * 3600) return @optimization_cache[cache_key] end end # Get historical plan executions end_time = Time.now start_time = end_time - (30 * 24 * 60 * 60) # 30 days plan_history = @history_store.get_history( plan_id: plan_type, start_time: start_time, end_time: end_time ) if plan_history.size < 5 @logger.info("Insufficient data to optimize task sequence for #{plan_type}") return { optimized: false, reason: "Insufficient plan execution data", original_sequence: original_sequence, improved_sequence: original_sequence.dup } end # Generate optimization optimization = generate_optimized_sequence(original_sequence, plan_history, ) # Cache result @optimization_cache[cache_key] = optimization @last_optimization[cache_key] = Time.now optimization end |