Class: Abst::MPQS

Inherits:
Object
  • Object
show all
Defined in:
lib/include/prime_mpqs.rb

Constant Summary collapse

@@kronecker_table =
nil
@@fixed_factor_base =
[-1, 2, 3, 5, 7, 11, 13].freeze
@@fixed_factor_base_log =
([nil] + @@fixed_factor_base[1..-1].map {|p| Math.log(p)}).freeze
@@mpqs_parameter_map =
[[100,20]] * 9 + [
[100, 20],    # 9 -digits

[100, 21],    # 10

[100, 22],    # 11

[100, 24],    # 12

[100, 26],    # 13

[100, 29],    # 14

[100, 32],    # 15

[200, 35],    # 16

[300, 40],    # 17

[300, 60],    # 18

[300, 80],    # 19

[300, 100],   # 20

[300, 100],   # 21

[300, 120],   # 22

[300, 140],   # 23

[600, 160],   # 24

[900, 180],   # 25

[1000, 200],  # 26

[1000, 220],  # 27

[2000, 240],  # 28

[2000, 260],  # 29

[2000, 325],  # 30

[2000, 355],  # 31

[2000, 375],  # 32

[3000, 400],  # 33

[2000, 425],  # 34

[2000, 550],  # 35

[3000, 650],  # 36

[5000, 750],  # 37

[4000, 850],  # 38

[4000, 950],  # 39

[5000, 1000], # 40

[14000, 1150],  # 41

[15000, 1300],  # 42

[15000, 1600],  # 43

[15000, 1900],  # 44

[15000, 2200],  # 45

[20000, 2500],  # 46

[25000, 2500],  # 47

[27500, 2700],  # 48

[30000, 2800],  # 49

[35000, 2900],  # 50

[40000, 3000],  # 51

[50000, 3200],  # 52

[50000, 3500]]

Class Method Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(n, thread_num) ⇒ MPQS

Returns a new instance of MPQS.



76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# File 'lib/include/prime_mpqs.rb', line 76

def initialize(n, thread_num)
#@@proc_time[:init] -= Time.now.to_i + Time.now.usec.to_f / 10 ** 6

  @original_n = n
  @thread_num = [thread_num, 1].max
  @big_prime = {}
  @big_prime_mutex = Mutex.new

  decide_multiplier(n)
  decide_parameter
  select_factor_base
  some_precomputations

  @d = Abst.isqrt(Abst.isqrt(@n >> 1) / @sieve_range)
  @d -= (@d & 3) + 1

  @matrix_left = []
  @matrix_right = []
  @mask = 1
  @check_list = Array.new(@factor_base_size)
#@@proc_time[:init] += Time.now.to_i + Time.now.usec.to_f / 10 ** 6

end

Class Method Details

.kronecker_tableObject

@@proc_time = Hash.new(0) def self.get_times return @@proc_time end



62
63
64
65
66
67
68
69
70
71
72
73
74
# File 'lib/include/prime_mpqs.rb', line 62

def self.kronecker_table
  unless @@kronecker_table
    target = [3, 5, 7, 11, 13]
    @@kronecker_table = 4.times.map{Hash.new}
    (17..3583).each_prime do |p|
      k = target.map {|b| Abst.kronecker_symbol(p, b)}
      @@kronecker_table[(p & 6) >> 1][k] ||= p
    end
    @@kronecker_table[0][[1, 1, 1, 1, 1]] = 1
  end

  return @@kronecker_table
end

Instance Method Details

#decide_multiplier(n) ⇒ Object



98
99
100
101
102
# File 'lib/include/prime_mpqs.rb', line 98

def decide_multiplier(n)
  t = [3, 5, 7, 11, 13].map {|p| Abst.kronecker_symbol(n, p)}
  multiplier = self.class.kronecker_table[(n & 6) >> 1][t]
  @n = n * multiplier
end

#decide_parameterObject



104
105
106
107
108
109
110
# File 'lib/include/prime_mpqs.rb', line 104

def decide_parameter
  digit = Math.log(@n, 10).floor
  parameter = @@mpqs_parameter_map[digit] ? @@mpqs_parameter_map[digit].dup : @@mpqs_parameter_map.last.dup
  parameter[0] = (parameter[0] * 2).floor
  @sieve_range, @factor_base_size = parameter
  @sieve_range_2 = @sieve_range << 1
end

#eliminate_big_primes(sieve_rslt) ⇒ Object



263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# File 'lib/include/prime_mpqs.rb', line 263

def eliminate_big_primes(sieve_rslt)
  sieve_rslt_with_big_prime = sieve_rslt.select{|f, re, d, r| 1 != re}
  sieve_rslt.select!{|f, re, d, r| 1 == re}

  temp_f = sieve_rslt.map(&:first)
  temp_r = sieve_rslt.map(&:last)
  temp_big = sieve_rslt.map{|f, re, d, r| d}
  sieve_rslt_with_big_prime.each do |f, re, d, r|
    unless @big_prime[re]
      @big_prime[re] = [f, r, d]
    else
      temp_f << (@big_prime[re][0].zip(f).map{|e1, e2| e1 + e2})
      temp_big << (re * d * @big_prime[re][2])
      temp_r << (r * @big_prime[re][1])
    end
  end

  return temp_f, temp_big, temp_r
end

#find_factorObject



138
139
140
141
142
143
144
145
# File 'lib/include/prime_mpqs.rb', line 138

def find_factor
  if 1 == @thread_num
    find_factor_single_thread
  else
    sieve_thread_num = [@thread_num - 2, 1].max
    find_factor_multi_thread(sieve_thread_num)
  end
end

#find_factor_multi_thread(sieve_thread_num) ⇒ Object



193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
# File 'lib/include/prime_mpqs.rb', line 193

def find_factor_multi_thread(sieve_thread_num)
  queue_poly = SizedQueue.new(sieve_thread_num)
  queue_sieve_rslt = SizedQueue.new(sieve_thread_num)

  # Create thread make polynomials

  th_make_poly = Thread.new do
    loop { queue_poly.push next_poly }
  end

  thg_sieve = ThreadGroup.new
  # Create threads for sieve

  sieve_thread_num.times do
    thread = Thread.new do
      loop do
        a, b, c, d = queue_poly.shift

#temp = Time.now.to_i + Time.now.usec.to_f / 10 ** 6

        # Sieve

        rslt = sieve(a, b, c, d)
#@@proc_time[:sieve] += Time.now.to_i + Time.now.usec.to_f / 10 ** 6 - temp


        queue_sieve_rslt.push rslt unless rslt.empty?
      end
    end
    thg_sieve.add thread
  end

  r_list = []
  factorization = []
  big_prime_sup = []
  loop do
    sieve_rslt = queue_sieve_rslt.shift
    next if sieve_rslt.empty?

#temp = Time.now.to_i + Time.now.usec.to_f / 10 ** 6

    f, big, r = eliminate_big_primes(sieve_rslt)
    next if f.empty?

#p [factorization.size, r_list.size, big_prime_sup.size]

    # Gaussian elimination

    factorization.concat f
    r_list.concat r
    big_prime_sup.concat big

    eliminated = gaussian_elimination(f)
#@@proc_time[:gaussian] += Time.now.to_i + Time.now.usec.to_f / 10 ** 6 - temp

    eliminated.each do |row|
      x = y = 1
      f = Array.new(@factor_base_size, 0)
      factorization.size.times do |i|
        next if row[i] == 0
        x = x * r_list[i] % @n
        f = f.zip(factorization[i]).map{|e1, e2| e1 + e2}
        y = y * big_prime_sup[i] % @n
      end

      2.upto(@factor_base_size - 1) do |i|
        y = y * Abst.power(@factor_base[i], f[i] >> 1, @n) % @n
      end
      y = (y << (f[1] >> 1)) % @n

      z = Abst.lehmer_gcd(x - y, @original_n)
      return z if 1 < z and z < @original_n
    end
  end
ensure
  thg_sieve.list.each {|th| th.kill}
  th_make_poly.kill
end

#find_factor_single_threadObject



147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# File 'lib/include/prime_mpqs.rb', line 147

def find_factor_single_thread
  r_list = []
  factorization = []
  big_prime_sup = []

  loop do
    # Create polynomial

    a, b, c, d = next_poly

    # Sieve

#temp = Time.now.to_i + Time.now.usec.to_f / 10 ** 6

    sieve_rslt = sieve(a, b, c, d)
#@@proc_time[:sieve] += Time.now.to_i + Time.now.usec.to_f / 10 ** 6 - temp

    next if sieve_rslt.empty?
    f, big, r = eliminate_big_primes(sieve_rslt)
    next if f.empty?

    # Gaussian elimination

    factorization += f
    r_list += r
    big_prime_sup += big

#@@proc_time[:gaussian] -= Time.now.to_i + Time.now.usec.to_f / 10 ** 6

    eliminated = gaussian_elimination(f)
#@@proc_time[:gaussian] += Time.now.to_i + Time.now.usec.to_f / 10 ** 6

    eliminated.each do |row|
      x = y = 1
      f = Array.new(@factor_base_size, 0)
      factorization.size.times do |i|
        next if row[i] == 0
        x = x * r_list[i] % @n
        f = f.zip(factorization[i]).map{|e1, e2| e1 + e2}
        y = y * big_prime_sup[i] % @n
      end

      2.upto(@factor_base_size - 1) do |i|
        y = y * Abst.power(@factor_base[i], f[i] >> 1, @n) % @n
      end
      y = (y << (f[1] >> 1)) % @n

      z = Abst.lehmer_gcd(x - y, @original_n)
      return z if 1 < z and z < @original_n
    end
  end
end

#gaussian_elimination(m) ⇒ Object



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
# File 'lib/include/prime_mpqs.rb', line 385

def gaussian_elimination(m)
  elim_start = @matrix_left.size
  temp = Array.new(m.size)
  m.size.times do |i|
    temp[i] = @mask
    @mask <<= 1
  end
  rslt = @matrix_right += temp
  m = @matrix_left.concat(m.map{|row| row.reverse_each.map{|i| i[0]}})

  height = m.size
  width = @factor_base_size

  i = 0
  width.times do |j|
    unless @check_list[j]
      # Find non-zero entry

      row = nil
      elim_start.upto(height - 1) do |i2|
        if 1 == m[i2][j]
          row = i2
          break
        end
      end
      next unless row

      @check_list[j] = row

      # Swap?

      if i < row
        m.insert(i, m.delete_at(row))
        rslt.insert(i, rslt.delete_at(row))
      end

      elim_start += 1
    end

    # Eliminate

    m_i = m[i]
    (row ? (row + 1) : elim_start).upto(height - 1) do |i2|
      next if m[i2][j] == 0

      m_i2 = m[i2]
      (j + 1).upto(width - 1) do |j2|
        m_i2[j2] ^= 1 if 1 == m_i[j2]
      end
      rslt[i2] ^= rslt[i]
    end

    i += 1
  end

  t = height - i
  m.pop(t)
  return rslt.pop(t)
end

#next_dObject



298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
# File 'lib/include/prime_mpqs.rb', line 298

def next_d
  d = @d + 4
  if d < Abst.primes_list.last
    plist = Abst.primes_list
    (d..plist.last).each_prime do |p|
      return p if p[1] == 1 and Abst.kronecker_symbol(@n, p) == 1
    end
    d += 4
  end

  loop do
    return d if Abst.kronecker_symbol(@n, d) == 1 and Abst.power(@n, d >> 1, d) == 1
    d += 4
  end
end

#next_polyObject

Return

a, b,c



284
285
286
287
288
289
290
291
292
293
294
295
296
# File 'lib/include/prime_mpqs.rb', line 284

def next_poly
#temp = Time.now.to_i + Time.now.usec.to_f / 10 ** 6

  @d = d = next_d
  a = d ** 2
  h1 = Abst.power(@n, (d >> 2) + 1, d)
  h2 = ((@n - h1 ** 2) / d) * Abst.extended_lehmer_gcd(h1 << 1, d)[0] % d
  b = h1 + h2 * d
  b = a - b if b.even?
  c = ((b ** 2 - @n) >> 2) / a

#@@proc_time[:make_poly_2] += Time.now.to_i + Time.now.usec.to_f / 10 ** 6 - temp

  return a, b, c, d
end

#select_factor_baseObject



112
113
114
115
116
117
118
119
120
# File 'lib/include/prime_mpqs.rb', line 112

def select_factor_base
  @factor_base = @@fixed_factor_base.dup
  (17..INFINITY).each_prime do |p|
    if 1 == Abst.kronecker_symbol(@n, p)
      @factor_base.push(p)
      break if @factor_base_size <= @factor_base.size
    end
  end
end

#sieve(a, b, c, d) ⇒ Object



314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
# File 'lib/include/prime_mpqs.rb', line 314

def sieve(a, b, c, d)
  a2 = a << 1
  lo = -(b / a2) - @sieve_range + 1

  sieve = Array.new(@sieve_range_2, 0)

#temp = Time.now.to_i + Time.now.usec.to_f / 10 ** 6

  # Sieve by 2

  #    0.upto(@sieve_range_2 - 1) do |i|

  #      count = 1

  #      count += 1 while sieve[i][2][count] == 0

  #      sieve[i][1] += @factor_base_log[1] * count

  #    end


  # Sieve by 3, 5, 7, 11, ...

  #    2.upto(@factor_base_size - 1) do |i|

  4.upto(@factor_base_size - 1) do |i|
    p = @factor_base[i]
    a_inverse = Abst.extended_lehmer_gcd(a2, p ** @power_limit[i])[0]
    pe = 1
    e = 1

    power_limit_i = @power_limit[i]
    factor_base_log_i = @factor_base_log[i]
    mod_sqrt_cache_i = @mod_sqrt_cache[i]
    while e <= power_limit_i
      pe *= p
      sqrt = mod_sqrt_cache_i[e]

      t = sqrt
      s = ((t - b) * a_inverse - lo) % pe
      s.step(@sieve_range_2 - 1, pe) do |j|
        sieve[j] += factor_base_log_i
      end

      t = pe - sqrt
      s = ((t - b) * a_inverse - lo) % pe
      s.step(@sieve_range_2 - 1, pe) do |j|
        sieve[j] += factor_base_log_i
      end

      e += 1
    end
  end
#@@proc_time[:sieve_a] += Time.now.to_i + Time.now.usec.to_f / 10 ** 6 - temp


#temp = Time.now.to_i + Time.now.usec.to_f / 10 ** 6

  # select trial division target

  td_target = []
  sieve.each.with_index do |sum_of_log, idx|
    if @closenuf < sum_of_log
      x = idx + lo
      t = a * x
      td_target.push([(t << 1) + b, (t + b) * x + c])
    end
  end
#@@proc_time[:sieve_slct] += Time.now.to_i + Time.now.usec.to_f / 10 ** 6 - temp


  # trial division on factor base

  rslt = []
#temp = Time.now.to_i + Time.now.usec.to_f / 10 ** 6

  td_target.each do |r, s|
    f, re = trial_division_on_factor_base(s, @factor_base)
    f[1] += 2
    rslt.push [f, re, d, r]
  end
#@@proc_time[:sieve_td] += Time.now.to_i + Time.now.usec.to_f / 10 ** 6 - temp


  return rslt
end

#some_precomputationsObject



122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# File 'lib/include/prime_mpqs.rb', line 122

def some_precomputations
  size  = @@fixed_factor_base_log.size
  @factor_base_log = @@fixed_factor_base_log + @factor_base[size..-1].map {|p| Math.log(p)}

  @power_limit = Array.new(@factor_base_size)
  @mod_sqrt_cache = Array.new(@factor_base_size)
  2.upto(@factor_base_size - 1) do |i|
    p = @factor_base[i]
    @power_limit[i] = (@factor_base_log.last / @factor_base_log[i]).floor
    @mod_sqrt_cache[i] = [nil] + Abst.mod_sqrt(@n, p, @power_limit[i], true)
  end

  target = Math.log(@n) / 2 + Math.log(@sieve_range) - 1
  @closenuf = target - 1.8 * Math.log(@factor_base.last)
end

#trial_division_on_factor_base(n, factor_base) ⇒ Object



442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
# File 'lib/include/prime_mpqs.rb', line 442

def trial_division_on_factor_base(n, factor_base)
  factor = Array.new(@factor_base_size, 0)
  if n < 0
    factor[0] = 1
    n = -n
  end

  div_count = 1
  div_count += 1 while n[div_count] == 0
  factor[1] = div_count
  n >>= div_count

  i = 2
  while i < @factor_base_size
    d = factor_base[i]
    q, r = n.divmod(d)
    if 0 == r
      n = q
      div_count = 1
      loop do
        q, r = n.divmod(d)
        break unless 0 == r

        n = q
        div_count += 1
      end

      factor[i] = div_count
    end

    i += 1
  end

  return factor, n
end