Class: WSK::Functions::Function
- Inherits:
-
Object
- Object
- WSK::Functions::Function
- Includes:
- Common
- Defined in:
- lib/WSK/Functions.rb
Overview
Class implementing a mathematical function that can then be used in many contexts
Instance Method Summary collapse
-
#apply_damping(iSlopeUp, iSlopeDown) ⇒ Object
Apply damping.
-
#apply_map_function(iMapFunction) ⇒ Object
Apply a mapping function to this function.
-
#apply_on_volume(iInputData, oOutputData, iIdxBeginSample, iIdxEndSample, iUnitDB) ⇒ Object
Apply the function on the volume of a raw buffer.
-
#convert_to_db(iMaxYValue) ⇒ Object
Convert the Y units in DB equivalent.
-
#divide_by(iFactor) ⇒ Object
Divide values by a given factor.
-
#divide_by_function(iDivFunction) ⇒ Object
Divide this function by another function.
-
#draw(iInputData, oOutputData, iIdxBeginSample, iIdxEndSample, iUnitDB, iMedianValue) ⇒ Object
Draw the function into a raw buffer.
-
#function_data ⇒ Object
Get the internal function data.
-
#get_bounds ⇒ Object
Get the function bounds.
-
#initialize ⇒ Function
constructor
Constructor.
-
#invert_abscisses ⇒ Object
Invert the abscisses of a function.
-
#read_from_file(iFileName) ⇒ Object
Read from a file.
-
#read_from_input_volume(iInputData, iIdxBeginSample, iIdxEndSample, iInterval, iRMSRatio) ⇒ Object
Read a function from the volume of an input data.
-
#remove_noise_abscisses(iMinDistance) ⇒ Object
Remove intermediate abscisses that are too close to each other.
-
#round_to_precision(iPrecisionX, iPrecisionY) ⇒ Object
Round values to a given precision.
-
#set(iHashFunction) ⇒ Object
Set directly a function from a hash.
-
#substract_function(iSubFunction) ⇒ Object
Substract a function to this function.
-
#value_log(iValue) ⇒ Object
Compute the log of a function value.
-
#value_val_2_db(iValue, iMaxValue) ⇒ Object
Compute a DB value out of a ratio using function values.
-
#write_to_file(iFileName, iParams = {}) ⇒ Object
Write the function to a file.
Methods included from Common
#accessInputWaveFile, #accessOutputWaveFile, #getWaveFileAccesses, #parsePlugins, #readDuration, #readFFTProfile, #readThresholds, #val2db
Constructor Details
#initialize ⇒ Function
Constructor
65 66 67 68 69 70 71 |
# File 'lib/WSK/Functions.rb', line 65 def initialize # The underlying Ruby function @Function = nil # The C libraries @FunctionUtils = nil @VolumeUtils = nil end |
Instance Method Details
#apply_damping(iSlopeUp, iSlopeDown) ⇒ Object
Apply damping.
- Parameters
-
iSlopeUp (Rational): The maximal value of slope when increasing (should be > 0), or nil if none
-
iSlopeDown (Rational): The minimal value of slope when decreasing (should be < 0), or nil if none
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
# File 'lib/WSK/Functions.rb', line 262 def apply_damping(iSlopeUp, iSlopeDown) if ((iSlopeUp != nil) and (iSlopeUp <= 0)) log_err "Upward slope (#{iSlopeUp}) has to be > 0" elsif ((iSlopeDown != nil) and (iSlopeDown >= 0)) log_err "Downward slope (#{iSlopeDown}) has to be < 0" else case @Function[:FunctionType] when FCTTYPE_PIECEWISE_LINEAR # Keep the first point lNewPoints = [ @Function[:Points][0] ] lIdxSegment = 0 while (lIdxSegment < @Function[:Points].size - 1) # Compute the slope of this segment #puts "lIdxSegment=#{lIdxSegment}/#{@Function[:Points].size} Points=[ [ #{sprintf('%.2f',@Function[:Points][lIdxSegment][0])}, #{sprintf('%.2f',@Function[:Points][lIdxSegment][1])} ], [ #{sprintf('%.2f',@Function[:Points][lIdxSegment+1][0])}, #{sprintf('%.2f',@Function[:Points][lIdxSegment+1][1])} ] ]" lSegmentSlope = (@Function[:Points][lIdxSegment+1][1]-@Function[:Points][lIdxSegment][1])/(@Function[:Points][lIdxSegment+1][0]-@Function[:Points][lIdxSegment][0]) #puts "lIdxSegment=#{lIdxSegment}/#{@Function[:Points].size} Slope=#{sprintf('%.2f',lSegmentSlope)} (#{lSegmentSlope.precs.inspect})" if (((lSegmentSlope > 0) and (iSlopeUp != nil) and (lSegmentSlope > iSlopeUp)) or ((lSegmentSlope < 0) and (iSlopeDown != nil) and (lSegmentSlope < iSlopeDown))) # Choose the correct damping slope depending on the direction lSlope = nil if (lSegmentSlope > 0) lSlope = iSlopeUp else lSlope = iSlopeDown end # We have to apply damping starting the beginning of this segment. # Find the next intersection between the damped segment and our function. # The abscisse of the intersection lIntersectX = nil # A constant for the next loop lDampedSegmentOffsetY = @Function[:Points][lIdxSegment][1] - @Function[:Points][lIdxSegment][0]*lSlope lIdxSegmentIntersect = lIdxSegment + 1 while (lIdxSegmentIntersect < @Function[:Points].size - 1) # Find if there is an intersection lSegmentIntersectDistX = @Function[:Points][lIdxSegmentIntersect+1][0] - @Function[:Points][lIdxSegmentIntersect][0] lSegmentIntersectDistY = @Function[:Points][lIdxSegmentIntersect+1][1] - @Function[:Points][lIdxSegmentIntersect][1] lIntersectX = ((lDampedSegmentOffsetY - @Function[:Points][lIdxSegmentIntersect][1])*lSegmentIntersectDistX + @Function[:Points][lIdxSegmentIntersect][0]*lSegmentIntersectDistY)/(lSegmentIntersectDistY - lSlope*lSegmentIntersectDistX) # Is lIntersectX among our range ? if ((lIntersectX >= @Function[:Points][lIdxSegmentIntersect][0]) and (lIntersectX <= @Function[:Points][lIdxSegmentIntersect+1][0])) # We have an intersection in the segment beginning at point n. lIdxSegmentIntersect, exactly at abscisse lIntersectX. break else # Erase it as we will test for it after the loop lIntersectX = nil end lIdxSegmentIntersect += 1 end # Here, lIdxSegmentIntersect can point to the last point if no intersection was found if (lIntersectX == nil) # We could not find any intersection # We consider adding a point following the damped slope till the end of the function lIntersectX = @Function[:Points][-1][0] end # Add the intersecting point (could be the last one) lIntersectPoint = [ lIntersectX, (lIntersectX - @Function[:Points][lIdxSegment][0])*lSlope + @Function[:Points][lIdxSegment][1] ] #puts "lIntersectX=#{lIntersectX.to_f} @Function[:Points][lIdxSegment][0]=#{@Function[:Points][lIdxSegment][0].to_f} lSlope=#{lSlope.to_f} @Function[:Points][lIdxSegment][1]=#{@Function[:Points][lIdxSegment][1].to_f} lIntersectPoint[1]=#{lIntersectPoint[1].to_f}" lNewPoints << lIntersectPoint # Continue after this intersection (we create also the intersecting point on our old points by modifying them) @Function[:Points][lIdxSegmentIntersect] = lIntersectPoint lIdxSegment = lIdxSegmentIntersect else # The slope is ok, keep this segment as it is lNewPoints << @Function[:Points][lIdxSegment+1] lIdxSegment += 1 end end # Replace our points with new ones @Function[:Points] = lNewPoints else log_err "Unknown function type: #{@Function[:FunctionType]}" end end optimize end |
#apply_map_function(iMapFunction) ⇒ Object
Apply a mapping function to this function.
- Parameters
-
iMapFunction (Function): The mapping function
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
# File 'lib/WSK/Functions.rb', line 429 def apply_map_function(iMapFunction) case @Function[:FunctionType] when FCTTYPE_PIECEWISE_LINEAR case iMapFunction.function_data[:FunctionType] when FCTTYPE_PIECEWISE_LINEAR # Both functions are piecewise linear # Algorithm: # * For each segment of our function: # * We look at the segments from the map function. # * For each found segment: # *** We find at which abscisses this segment will change values # *** We change the sub-segment between those abscisses lPoints = @Function[:Points] lMapPoints = iMapFunction.function_data[:Points] lNewPoints = [] lIdxSegment = 0 while (lIdxSegment < lPoints.size-1) lBeginX = lPoints[lIdxSegment][0] lBeginY = lPoints[lIdxSegment][1] lEndX = lPoints[lIdxSegment+1][0] lEndY = lPoints[lIdxSegment+1][1] # The direction in which we are going to look for the map segments lIncMapSegment = nil if (lEndY >= lBeginY) lIncMapSegment = true else lIncMapSegment = false end # Find the map function's segment containing the beginning of our segment lIdxMapSegment = 0 if (lBeginY == lMapPoints[-1][0]) lIdxMapSegment = lMapPoints.size - 2 else while (lBeginY >= lMapPoints[lIdxMapSegment+1][0]) lIdxMapSegment += 1 end end # Compute the new value of our segment beginning lNewBeginY = lMapPoints[lIdxMapSegment][1] + ((lMapPoints[lIdxMapSegment+1][1]-lMapPoints[lIdxMapSegment][1])*(lBeginY-lMapPoints[lIdxMapSegment][0]))/(lMapPoints[lIdxMapSegment+1][0]-lMapPoints[lIdxMapSegment][0]) lNewPoints << [ lBeginX, lNewBeginY ] # Get the next map segments unless we reach our segment's end # !!! Find the next map segment according to the direction if (lIncMapSegment) while (lEndY > lMapPoints[lIdxMapSegment+1][0]) # We have a new map segment to consider in our segment # Find the absciss at which our Y coordinates get the value lMapPoints[lIdxMapSegment+1][0] lNewSegmentX = lBeginX + ((lEndX-lBeginX)*(lMapPoints[lIdxMapSegment+1][0] - lBeginY))/(lEndY-lBeginY) lNewPoints << [ lNewSegmentX, lMapPoints[lIdxMapSegment+1][1] ] lIdxMapSegment += 1 end # Our segment ends before next map segment else while (lEndY < lMapPoints[lIdxMapSegment][0]) # We have a new map segment to consider in our segment # Find the absciss at which our Y coordinates get the value lMapPoints[lIdxMapSegment][0] lNewSegmentX = lBeginX + ((lEndX-lBeginX)*(lMapPoints[lIdxMapSegment][0] - lBeginY))/(lEndY-lBeginY) lNewPoints << [ lNewSegmentX, lMapPoints[lIdxMapSegment][1] ] lIdxMapSegment -= 1 end # Our segment ends before previous map segment end # Write the segment end if it is the last one (otherwise it will be written by the next iteration) if (lIdxSegment == lPoints.size-2) lNewEndY = lMapPoints[lIdxMapSegment][1] + ((lMapPoints[lIdxMapSegment+1][1]-lMapPoints[lIdxMapSegment][1])*(lEndY-lMapPoints[lIdxMapSegment][0]))/(lMapPoints[lIdxMapSegment+1][0]-lMapPoints[lIdxMapSegment][0]) lNewPoints << [ lEndX, lNewEndY ] end lIdxSegment += 1 end # Replace with new points @Function[:Points] = lNewPoints else log_err "Unknown function type: #{@Function[:FunctionType]}" end else log_err "Unknown function type: #{@Function[:FunctionType]}" end optimize end |
#apply_on_volume(iInputData, oOutputData, iIdxBeginSample, iIdxEndSample, iUnitDB) ⇒ Object
Apply the function on the volume of a raw buffer
- Parameters
-
iInputData (WSK::Model::InputData): The input data
-
oOutputData (WSK::Model::DirectStream): The output data
-
iIdxBeginSample (Integer): Index of the first sample beginning the volume transformation
-
iIdxEndSample (Integer): Index of the last sample ending the volume transformation
-
iUnitDB (Boolean): Are function values to be interpreted as DB units ?
178 179 180 181 182 183 184 185 186 187 |
# File 'lib/WSK/Functions.rb', line 178 def apply_on_volume(iInputData, oOutputData, iIdxBeginSample, iIdxEndSample, iUnitDB) prepareFunctionUtils lCFunction = @FunctionUtils.createCFunction(@Function, iIdxBeginSample, iIdxEndSample) lIdxBufferSample = iIdxBeginSample iInputData.each_raw_buffer(iIdxBeginSample, iIdxEndSample) do |iInputRawBuffer, iNbrSamples, iNbrChannels| prepareVolumeUtils oOutputData.pushRawBuffer(@VolumeUtils.applyVolumeFct(lCFunction, iInputRawBuffer, iInputData.Header.NbrBitsPerSample, iInputData.Header.NbrChannels, iNbrSamples, lIdxBufferSample, iUnitDB)) lIdxBufferSample += iNbrSamples end end |
#convert_to_db(iMaxYValue) ⇒ Object
Convert the Y units in DB equivalent
- Parameters
-
iMaxYValue (Rational): Maximal Y value
226 227 228 229 230 231 232 233 234 235 236 237 238 |
# File 'lib/WSK/Functions.rb', line 226 def convert_to_db(iMaxYValue) case @Function[:FunctionType] when FCTTYPE_PIECEWISE_LINEAR # Prepare variables for log computations @Log2 = Math::log(2).to_r @LogMax = value_log(iMaxYValue) @Function[:Points].each do |ioPoint| ioPoint[1] = value_val_2_db_Internal(ioPoint[1]) end else log_err "Unknown function type: #{@Function[:FunctionType]}" end end |
#divide_by(iFactor) ⇒ Object
Divide values by a given factor
- Parameters
-
iFactor (Rational): Factor to divide by
211 212 213 214 215 216 217 218 219 220 |
# File 'lib/WSK/Functions.rb', line 211 def divide_by(iFactor) case @Function[:FunctionType] when FCTTYPE_PIECEWISE_LINEAR @Function[:Points].each do |ioPoint| ioPoint[1] /= iFactor end else log_err "Unknown function type: #{@Function[:FunctionType]}" end end |
#divide_by_function(iDivFunction) ⇒ Object
Divide this function by another function
- Parameters
-
iDivFunction (Function): The function that divides
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
# File 'lib/WSK/Functions.rb', line 578 def divide_by_function(iDivFunction) case @Function[:FunctionType] when FCTTYPE_PIECEWISE_LINEAR case iDivFunction.function_data[:FunctionType] when FCTTYPE_PIECEWISE_LINEAR lNewPoints = [] unionXWithFunction_PiecewiseLinear(iDivFunction) do |iX, iY, iOtherY| if (iY == nil) lNewPoints << [ iX, 0 ] elsif (iOtherY == nil) lNewPoints << [ iX, 0 ] else lNewPoints << [ iX, iY / iOtherY ] end end # Replace with new points @Function[:Points] = lNewPoints else log_err "Unknown function type: #{@Function[:FunctionType]}" end else log_err "Unknown function type: #{@Function[:FunctionType]}" end optimize end |
#draw(iInputData, oOutputData, iIdxBeginSample, iIdxEndSample, iUnitDB, iMedianValue) ⇒ Object
Draw the function into a raw buffer
- Parameters
-
iInputData (WSK::Model::InputData): The input data
-
oOutputData (WSK::Model::DirectStream): The output data
-
iIdxBeginSample (Integer): Index of the first sample beginning the volume transformation
-
iIdxEndSample (Integer): Index of the last sample ending the volume transformation
-
iUnitDB (Boolean): Are function values to be interpreted as DB units ?
-
iMedianValue (Integer): Median value to draw function ratio of 1.
198 199 200 201 202 203 204 205 |
# File 'lib/WSK/Functions.rb', line 198 def draw(iInputData, oOutputData, iIdxBeginSample, iIdxEndSample, iUnitDB, iMedianValue) prepareFunctionUtils lCFunction = @FunctionUtils.createCFunction(@Function, iIdxBeginSample, iIdxEndSample) oOutputData.each_buffer(iIdxBeginSample, iIdxEndSample) do |iIdxBeginBufferSample, iIdxEndBufferSample| prepareVolumeUtils oOutputData.pushRawBuffer(@VolumeUtils.drawVolumeFct(lCFunction, iInputData.Header.NbrBitsPerSample, iInputData.Header.NbrChannels, iIdxEndBufferSample-iIdxBeginBufferSample+1, iIdxBeginBufferSample, iUnitDB, iMedianValue)) end end |
#function_data ⇒ Object
Get the internal function data
- Return
-
map<Symbol,Object>: The internal function data
608 609 610 |
# File 'lib/WSK/Functions.rb', line 608 def function_data return @Function end |
#get_bounds ⇒ Object
Get the function bounds
- Return
-
Rational: Minimal X
-
Rational: Minimal Y
-
Rational: Maximal X
-
Rational: Maximal Y
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
# File 'lib/WSK/Functions.rb', line 366 def get_bounds rMinX = nil rMinY = nil rMaxX = nil rMaxY = nil case @Function[:FunctionType] when FCTTYPE_PIECEWISE_LINEAR rMinX = @Function[:Points][0][0] rMaxX = @Function[:Points][-1][0] @Function[:Points].each do |iPoint| if (rMinY == nil) rMinY = iPoint[1] rMaxY = iPoint[1] else if (rMinY > iPoint[1]) rMinY = iPoint[1] end if (rMaxY < iPoint[1]) rMaxY = iPoint[1] end end end else log_err "Unknown function type: #{@Function[:FunctionType]}" end return rMinX, rMinY, rMaxX, rMaxY end |
#invert_abscisses ⇒ Object
Invert the abscisses of a function
345 346 347 348 349 350 351 352 353 354 355 356 357 |
# File 'lib/WSK/Functions.rb', line 345 def invert_abscisses case @Function[:FunctionType] when FCTTYPE_PIECEWISE_LINEAR lNewPoints = [] lMinMaxX = @Function[:Points][0][0] + @Function[:Points][-1][0] @Function[:Points].reverse_each do |iPoint| lNewPoints << [lMinMaxX - iPoint[0], iPoint[1]] end @Function[:Points] = lNewPoints else log_err "Unknown function type: #{@Function[:FunctionType]}" end end |
#read_from_file(iFileName) ⇒ Object
Read from a file
- Parameters
-
iFileName (String): File name
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
# File 'lib/WSK/Functions.rb', line 77 def read_from_file(iFileName) lStrFunction = nil if (File.exists?(iFileName)) File.open(iFileName, 'r') do |iFile| lStrFunction = iFile.read end else raise RuntimeError.new("Missing file #{iFileName} to load function.") end begin @Function = eval(lStrFunction) rescue Exception raise RuntimeError.new("Invalid function specified in file #{iFileName}: #{$!}") end convertDataTypes optimize end |
#read_from_input_volume(iInputData, iIdxBeginSample, iIdxEndSample, iInterval, iRMSRatio) ⇒ Object
Read a function from the volume of an input data
- Parameters
-
iInputData (WSK::Model::InputData): The input data
-
iIdxBeginSample (Integer): Index of the first sample beginning the volume reading
-
iIdxEndSample (Integer): Index of the last sample ending the volume reading
-
iInterval (Integer): The number of samples used as an interval in measuring the volume
-
iRMSRatio (Float): The ratio of RMS measure vs Peak measure (0.0 = only peak, 1.0 = only RMS)
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
# File 'lib/WSK/Functions.rb', line 103 def read_from_input_volume(iInputData, iIdxBeginSample, iIdxEndSample, iInterval, iRMSRatio) @Function = { :FunctionType => FCTTYPE_PIECEWISE_LINEAR, :Points => [] } # Profile prepareVolumeUtils lIdxCurrentSample = iIdxBeginSample while (lIdxCurrentSample <= iIdxEndSample) lIdxCurrentEndSample = lIdxCurrentSample + iInterval - 1 if (lIdxCurrentEndSample > iIdxEndSample) lIdxCurrentEndSample = iIdxEndSample end lRawBuffer = '' iInputData.each_raw_buffer(lIdxCurrentSample, lIdxCurrentEndSample, :nbr_samples_prefetch => iIdxEndSample-lIdxCurrentSample) do |iInputRawBuffer, iNbrSamples, iNbrChannels| lRawBuffer += iInputRawBuffer end # Profile this buffer lChannelLevelValues = @VolumeUtils.measureLevel(lRawBuffer, iInputData.Header.NbrBitsPerSample, iInputData.Header.NbrChannels, lIdxCurrentEndSample - lIdxCurrentSample + 1, iRMSRatio) # Combine the channel levels based on the RMS ratio also lMaxValue = Rational(0, 1) lRMSValue = Rational(0, 1) lChannelLevelValues.each do |iLevelValue| if (iLevelValue > lMaxValue) lMaxValue = iLevelValue end lRMSValue += iLevelValue*iLevelValue end lRMSValue = Math.sqrt(lRMSValue/lChannelLevelValues.size).to_r lLevelValue = lRMSValue*(iRMSRatio.to_r) + lMaxValue*(Rational(1)-iRMSRatio.to_r) #log_debug "[#{lIdxCurrentSample} - #{lIdxCurrentEndSample}] - Level: #{lLevelValue}" # If intervals are of length 1, the function is exactly the profile: no need to make intermediate points if (lIdxCurrentEndSample == lIdxCurrentSample) @Function[:Points] << [ Rational(lIdxCurrentSample), lLevelValue] lIdxCurrentSample += 1 else # Complete the function if (@Function[:Points].empty?) # First points: add also the point 0 @Function[:Points] = [ [ Rational(0, 1), lLevelValue] ] end # Add a point to the function in the middle of this interval lPointX = lIdxCurrentSample - iIdxBeginSample + Rational(lIdxCurrentEndSample - lIdxCurrentSample + 1, 2) @Function[:Points] << [lPointX, lLevelValue] # Increment the cursor lIdxCurrentSample = lIdxCurrentEndSample + 1 if (lIdxCurrentSample == iIdxEndSample + 1) # The last point: add the ending one @Function[:Points] << [Rational(iIdxEndSample - iIdxBeginSample, 1), lLevelValue] end end $stdout.write("#{(lIdxCurrentSample*100)/(iIdxEndSample - iIdxBeginSample + 1)} %\015") $stdout.flush end optimize end |
#remove_noise_abscisses(iMinDistance) ⇒ Object
Remove intermediate abscisses that are too close to each other
- Parameters
-
iMinDistance (Rational): Minimal distance for abscisses triplets to have
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
# File 'lib/WSK/Functions.rb', line 512 def remove_noise_abscisses(iMinDistance) case @Function[:FunctionType] when FCTTYPE_PIECEWISE_LINEAR lNewPoints = [ @Function[:Points][0] ] lIdxPoint = 0 while (lIdxPoint < @Function[:Points].size - 1) # Now we skip the next last point among iMinDistance range lPointX = @Function[:Points][lIdxPoint][0] lIdxOtherPoint = lIdxPoint + 1 while ((lIdxOtherPoint < @Function[:Points].size) and (@Function[:Points][lIdxOtherPoint][0] - lPointX < iMinDistance)) lIdxOtherPoint += 1 end # Either lIdxOtherPoint is beyond the end, or it points to the first point that is beyond iMinDistance # We add the previous point if it is not already ours if (lIdxOtherPoint-1 > lIdxPoint) lNewPoints << @Function[:Points][lIdxOtherPoint-1] # And we continue searching from this new added point lIdxPoint = lIdxOtherPoint-1 else # It is our point, continue on to the next one lNewPoints << @Function[:Points][lIdxOtherPoint] lIdxPoint = lIdxOtherPoint end end @Function[:Points] = lNewPoints else log_err "Unknown function type: #{@Function[:FunctionType]}" end optimize end |
#round_to_precision(iPrecisionX, iPrecisionY) ⇒ Object
Round values to a given precision
- Parameters
-
iPrecisionX (Rational): The desired precision for X values (1000 will round to E-3)
-
iPrecisionY (Rational): The desired precision for Y values (1000 will round to E-3)
245 246 247 248 249 250 251 252 253 254 255 |
# File 'lib/WSK/Functions.rb', line 245 def round_to_precision(iPrecisionX, iPrecisionY) case @Function[:FunctionType] when FCTTYPE_PIECEWISE_LINEAR @Function[:Points] = @Function[:Points].map do |iPoint| next [ (Rational((iPoint[0]*iPrecisionX).round, 1))/iPrecisionX, (Rational((iPoint[1]*iPrecisionY).round, 1))/iPrecisionY ] end else log_err "Unknown function type: #{@Function[:FunctionType]}" end optimize end |
#set(iHashFunction) ⇒ Object
Set directly a function from a hash
- Parameters
-
iHashFunction (map<Symbol,Object>): The hashed function
164 165 166 167 168 |
# File 'lib/WSK/Functions.rb', line 164 def set(iHashFunction) @Function = iHashFunction convertDataTypes optimize end |
#substract_function(iSubFunction) ⇒ Object
Substract a function to this function
- Parameters
-
iSubFunction (Function): The function to substract
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 |
# File 'lib/WSK/Functions.rb', line 548 def substract_function(iSubFunction) case @Function[:FunctionType] when FCTTYPE_PIECEWISE_LINEAR case iSubFunction.function_data[:FunctionType] when FCTTYPE_PIECEWISE_LINEAR lNewPoints = [] unionXWithFunction_PiecewiseLinear(iSubFunction) do |iX, iY, iOtherY| if (iY == nil) lNewPoints << [ iX, -iOtherY ] elsif (iOtherY == nil) lNewPoints << [ iX, iY ] else lNewPoints << [ iX, iY - iOtherY ] end end # Replace with new points @Function[:Points] = lNewPoints else log_err "Unknown function type: #{@Function[:FunctionType]}" end else log_err "Unknown function type: #{@Function[:FunctionType]}" end optimize end |
#value_log(iValue) ⇒ Object
Compute the log of a function value.
- Parameters
-
iValue (Rational): The value
616 617 618 |
# File 'lib/WSK/Functions.rb', line 616 def value_log(iValue) return Math::log(iValue).to_r end |
#value_val_2_db(iValue, iMaxValue) ⇒ Object
Compute a DB value out of a ratio using function values
- Parameters
-
iValue (Rational): The value
-
iMaxValue (Rational): The maximal value
- Return
-
Rational: Its corresponding db
627 628 629 630 631 632 |
# File 'lib/WSK/Functions.rb', line 627 def value_val_2_db(iValue, iMaxValue) @Log2 = Math::log(2).to_r @LogMax = value_log(iMaxValue) return value_val_2_db_Internal(iValue) end |
#write_to_file(iFileName, iParams = {}) ⇒ Object
Write the function to a file
- Parameters
-
iFileName (String): File name to write
-
iParams (map<Symbol,Object>): Additional parameters [optional = {}]:
-
:floats (Boolean): Do we write Float values ? [optional = false]
-
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
# File 'lib/WSK/Functions.rb', line 402 def write_to_file(iFileName, iParams = {}) lParams = { # Default value :floats => false }.merge(iParams) case @Function[:FunctionType] when FCTTYPE_PIECEWISE_LINEAR require 'pp' lData = @Function if (lParams[:floats]) # Convert to Floats lData[:Points].map! do |iPoint| next [ iPoint[0].to_f, iPoint[1].to_f ] end end File.open(iFileName, 'w') do |oFile| oFile.write(lData.pretty_inspect) end else log_err "Unknown function type: #{@Function[:FunctionType]}" end end |