Class: DecisionTree::ID3Tree
- Inherits:
-
Object
- Object
- DecisionTree::ID3Tree
- Defined in:
- lib/SelfModifiedDecisionTree.rb
Instance Method Summary collapse
- #build_rules(tree = @tree) ⇒ Object
- #fitness_for(attribute) ⇒ Object
- #graph(filename, file_type = "png") ⇒ Object
-
#id3_continuous(data, attributes, attribute) ⇒ Object
ID3 for binary classification of continuous variables (e.g. healthy / sick based on temperature thresholds).
-
#id3_discrete(data, attributes, attribute) ⇒ Object
ID3 for discrete label cases.
- #id3_train(data, attributes, default, used = {}) ⇒ Object
-
#initialize(attributes, data, default, type) ⇒ ID3Tree
constructor
A new instance of ID3Tree.
- #predict(test) ⇒ Object
- #ruleset ⇒ Object
- #train(data = @data, attributes = @attributes, default = @default) ⇒ Object
- #type(attribute) ⇒ Object
Constructor Details
#initialize(attributes, data, default, type) ⇒ ID3Tree
Returns a new instance of ID3Tree.
113 114 115 116 |
# File 'lib/SelfModifiedDecisionTree.rb', line 113 def initialize(attributes, data, default, type) @used, @tree, @type = {}, {}, type @data, @attributes, @default = data, attributes, default end |
Instance Method Details
#build_rules(tree = @tree) ⇒ Object
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# File 'lib/SelfModifiedDecisionTree.rb', line 220 def build_rules(tree=@tree) attr = tree.to_a.first cases = attr[1].to_a rules = [] cases.each do |c,child| if child.is_a?(Hash) then build_rules(child).each do |r| r2 = r.clone r2.premises.unshift([attr.first, c]) rules << r2 end else rules << Rule.new(@attributes, [[attr.first, c]], child) end end rules end |
#fitness_for(attribute) ⇒ Object
132 133 134 135 136 137 |
# File 'lib/SelfModifiedDecisionTree.rb', line 132 def fitness_for(attribute) case type(attribute) when :discrete; fitness = proc{|a,b,c| id3_discrete(a,b,c)} when :continuous; fitness = proc{|a,b,c| id3_continuous(a,b,c)} end end |
#graph(filename, file_type = "png") ⇒ Object
208 209 210 211 212 |
# File 'lib/SelfModifiedDecisionTree.rb', line 208 def graph(filename, file_type = "png") require 'graphr' dgp = DotGraphPrinter.new(build_tree) dgp.write_to_file("#{filename}.#{file_type}", file_type) end |
#id3_continuous(data, attributes, attribute) ⇒ Object
ID3 for binary classification of continuous variables (e.g. healthy / sick based on temperature thresholds)
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
# File 'lib/SelfModifiedDecisionTree.rb', line 176 def id3_continuous(data, attributes, attribute) values, thresholds = data.collect { |d| d[attributes.index(attribute)] }.uniq.sort, [] return [-1, -1] if values.size == 1 values.each_index { |i| thresholds.push((values[i]+(values[i+1].nil? ? values[i] : values[i+1])).to_f / 2) } thresholds.pop #thresholds -= used[attribute] if used.has_key? attribute gain = thresholds.collect { |threshold| sp = data.partition { |d| d[attributes.index(attribute)] >= threshold } pos = (sp[0].size).to_f / data.size neg = (sp[1].size).to_f / data.size [data.classification.entropy - pos*sp[0].classification.entropy - neg*sp[1].classification.entropy, threshold] }.max { |a,b| a[0] <=> b[0] } return [-1, -1] if gain.size == 0 gain end |
#id3_discrete(data, attributes, attribute) ⇒ Object
ID3 for discrete label cases
196 197 198 199 200 201 202 |
# File 'lib/SelfModifiedDecisionTree.rb', line 196 def id3_discrete(data, attributes, attribute) values = data.collect { |d| d[attributes.index(attribute)] }.uniq.sort partitions = values.collect { |val| data.select { |d| d[attributes.index(attribute)] == val } } remainder = partitions.collect {|p| (p.size.to_f / data.size) * p.classification.entropy}.inject(0) {|i,s| s+=i } [data.classification.entropy - remainder, attributes.index(attribute)] end |
#id3_train(data, attributes, default, used = {}) ⇒ Object
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
# File 'lib/SelfModifiedDecisionTree.rb', line 139 def id3_train(data, attributes, default, used={}) return default if data.empty? # return classification if all examples have the same classification return data.first.last if data.classification.uniq.size == 1 # Choose best attribute: # 1. enumerate all attributes # 2. Pick best attribute # 3. If attributes all score the same, then pick a random one to avoid infinite recursion. performance = attributes.collect { |attribute| fitness_for(attribute).call(data, attributes, attribute) } max = performance.max { |a,b| a[0] <=> b[0] } min = performance.min { |a,b| a[0] <=> b[0] } max = performance.shuffle.first if max[0] == min[0] best = Node.new(attributes[performance.index(max)], max[1], max[0]) best.threshold = nil if @type == :discrete @used.has_key?(best.attribute) ? @used[best.attribute] += [best.threshold] : @used[best.attribute] = [best.threshold] tree, l = {best => {}}, ['>=', '<'] fitness = fitness_for(best.attribute) case type(best.attribute) when :continuous data.partition { |d| d[attributes.index(best.attribute)] >= best.threshold }.each_with_index { |examples, i| tree[best][String.new(l[i])] = id3_train(examples, attributes, (data.classification.mode rescue 0), &fitness) } when :discrete values = data.collect { |d| d[attributes.index(best.attribute)] }.uniq.sort partitions = values.collect { |val| data.select { |d| d[attributes.index(best.attribute)] == val } } partitions.each_with_index { |examples, i| tree[best][values[i]] = id3_train(examples, attributes-[values[i]], (data.classification.mode rescue 0), &fitness) } end tree end |
#predict(test) ⇒ Object
204 205 206 |
# File 'lib/SelfModifiedDecisionTree.rb', line 204 def predict(test) descend(@tree, test) end |
#ruleset ⇒ Object
214 215 216 217 218 |
# File 'lib/SelfModifiedDecisionTree.rb', line 214 def ruleset rs = Ruleset.new(@attributes, @data, @default, @type) rs.rules = build_rules rs end |
#train(data = @data, attributes = @attributes, default = @default) ⇒ Object
118 119 120 121 122 123 124 125 126 |
# File 'lib/SelfModifiedDecisionTree.rb', line 118 def train(data=@data, attributes=@attributes, default=@default) attributes = attributes.map {|e| e.to_s} initialize(attributes, data, default, @type) # Remove samples with same attributes leaving most common classification data2 = data.inject({}) {|hash, d| hash[d.slice(0..-2)] ||= Hash.new(0); hash[d.slice(0..-2)][d.last] += 1; hash }.map{|key,val| key + [val.sort_by{ |k, v| v }.last.first]} @tree = id3_train(data2, attributes, default) end |
#type(attribute) ⇒ Object
128 129 130 |
# File 'lib/SelfModifiedDecisionTree.rb', line 128 def type(attribute) @type.is_a?(Hash) ? @type[attribute.to_sym] : @type end |