Class: Neural::Perceptron
- Inherits:
-
Object
- Object
- Neural::Perceptron
- Defined in:
- lib/Algorithmically/Neural/perceptron.rb
Instance Method Summary collapse
- #activate(weights, vector) ⇒ Object
- #execute(domain, num_inputs, iterations, learning_rate) ⇒ Object
- #get_output(weights, vector) ⇒ Object
-
#initialize(or_problem, inputs, iterations, learning_rate) ⇒ Perceptron
constructor
A new instance of Perceptron.
- #initialize_weights(problem_size) ⇒ Object
- #random_vector(minmax) ⇒ Object
- #test_weights(weights, domain, num_inputs) ⇒ Object
- #train_weights(weights, domain, num_inputs, iterations, lrate) ⇒ Object
- #transfer(activation) ⇒ Object
- #update_weights(num_inputs, weights, input, out_exp, out_act, l_rate) ⇒ Object
Constructor Details
#initialize(or_problem, inputs, iterations, learning_rate) ⇒ Perceptron
Returns a new instance of Perceptron.
5 6 7 |
# File 'lib/Algorithmically/Neural/perceptron.rb', line 5 def initialize(or_problem, inputs, iterations, learning_rate) execute(or_problem, inputs, iterations, learning_rate) end |
Instance Method Details
#activate(weights, vector) ⇒ Object
27 28 29 30 31 32 33 |
# File 'lib/Algorithmically/Neural/perceptron.rb', line 27 def activate(weights, vector) sum = weights[weights.size-1] * 1.0 vector.each_with_index do |input, i| sum += weights[i] * input end sum end |
#execute(domain, num_inputs, iterations, learning_rate) ⇒ Object
69 70 71 72 73 74 |
# File 'lib/Algorithmically/Neural/perceptron.rb', line 69 def execute(domain, num_inputs, iterations, learning_rate) weights = initialize_weights(num_inputs) train_weights(weights, domain, num_inputs, iterations, learning_rate) test_weights(weights, domain, num_inputs) weights end |
#get_output(weights, vector) ⇒ Object
39 40 41 42 |
# File 'lib/Algorithmically/Neural/perceptron.rb', line 39 def get_output(weights, vector) activation = activate(weights, vector) transfer(activation) end |
#initialize_weights(problem_size) ⇒ Object
15 16 17 18 |
# File 'lib/Algorithmically/Neural/perceptron.rb', line 15 def initialize_weights(problem_size) minmax = Array.new(problem_size + 1) { [-1.0, 1.0] } random_vector(minmax) end |
#random_vector(minmax) ⇒ Object
9 10 11 12 13 |
# File 'lib/Algorithmically/Neural/perceptron.rb', line 9 def random_vector(minmax) Array.new(minmax.size) do |i| minmax[i][0] + ((minmax[i][1] - minmax[i][0]) * rand()) end end |
#test_weights(weights, domain, num_inputs) ⇒ Object
58 59 60 61 62 63 64 65 66 67 |
# File 'lib/Algorithmically/Neural/perceptron.rb', line 58 def test_weights(weights, domain, num_inputs) correct = 0 domain.each do |pattern| input_vector = Array.new(num_inputs) { |k| pattern[k].to_f } output = get_output(weights, input_vector) correct += 1 if output.round == pattern.last end puts "Finished test with a score of #{correct}/#{domain.size}" correct end |
#train_weights(weights, domain, num_inputs, iterations, lrate) ⇒ Object
44 45 46 47 48 49 50 51 52 53 54 55 56 |
# File 'lib/Algorithmically/Neural/perceptron.rb', line 44 def train_weights(weights, domain, num_inputs, iterations, lrate) iterations.times do |epoch| error = 0.0 domain.each do |pattern| input = Array.new(num_inputs) { |k| pattern[k].to_f } output = get_output(weights, input) expected = pattern.last.to_f error += (output - expected).abs update_weights(num_inputs, weights, input, expected, output, lrate) end puts "> epoch=#{epoch}, error=#{error}" end end |
#transfer(activation) ⇒ Object
35 36 37 |
# File 'lib/Algorithmically/Neural/perceptron.rb', line 35 def transfer(activation) (activation >= 0) ? 1.0 : 0.0 end |
#update_weights(num_inputs, weights, input, out_exp, out_act, l_rate) ⇒ Object
20 21 22 23 24 25 |
# File 'lib/Algorithmically/Neural/perceptron.rb', line 20 def update_weights(num_inputs, weights, input, out_exp, out_act, l_rate) num_inputs.times do |i| weights[i] += l_rate * (out_exp - out_act) * input[i] end weights[num_inputs] += l_rate * (out_exp - out_act) * 1.0 end |