Class: BigDecimal

Inherits:
Numeric
  • Object
show all
Defined in:
lib/bigdecimal/util.rb,
bigdecimal.c,
bigdecimal.c

Overview

BigDecimal provides arbitrary-precision floating point decimal arithmetic.

Introduction

Ruby provides built-in support for arbitrary precision integer arithmetic.

For example:

42**13 #=> 1265437718438866624512

BigDecimal provides similar support for very large or very accurate floating point numbers.

Decimal arithmetic is also useful for general calculation, because it provides the correct answers people expect–whereas normal binary floating point arithmetic often introduces subtle errors because of the conversion between base 10 and base 2.

For example, try:

sum = 0
10_000.times do
  sum = sum + 0.0001
end
print sum #=> 0.9999999999999062

and contrast with the output from:

require 'bigdecimal'

sum = BigDecimal.new("0")
10_000.times do
  sum = sum + BigDecimal.new("0.0001")
end
print sum #=> 0.1E1

Similarly:

(BigDecimal.new(“1.2”) - BigDecimal(“1.0”)) == BigDecimal(“0.2”) #=> true

(1.2 - 1.0) == 0.2 #=> false

Special features of accurate decimal arithmetic

Because BigDecimal is more accurate than normal binary floating point arithmetic, it requires some special values.

Infinity

BigDecimal sometimes needs to return infinity, for example if you divide a value by zero.

BigDecimal.new(“1.0”) / BigDecimal.new(“0.0”) #=> Infinity BigDecimal.new(“-1.0”) / BigDecimal.new(“0.0”) #=> -Infinity

You can represent infinite numbers to BigDecimal using the strings 'Infinity', '+Infinity' and '-Infinity' (case-sensitive)

Not a Number

When a computation results in an undefined value, the special value NaN (for ‘not a number’) is returned.

Example:

BigDecimal.new(“0.0”) / BigDecimal.new(“0.0”) #=> NaN

You can also create undefined values.

NaN is never considered to be the same as any other value, even NaN itself:

n = BigDecimal.new(‘NaN’) n == 0.0 #=> false n == n #=> false

Positive and negative zero

If a computation results in a value which is too small to be represented as a BigDecimal within the currently specified limits of precision, zero must be returned.

If the value which is too small to be represented is negative, a BigDecimal value of negative zero is returned.

BigDecimal.new(“1.0”) / BigDecimal.new(“-Infinity”) #=> -0.0

If the value is positive, a value of positive zero is returned.

BigDecimal.new(“1.0”) / BigDecimal.new(“Infinity”) #=> 0.0

(See BigDecimal.mode for how to specify limits of precision.)

Note that -0.0 and 0.0 are considered to be the same for the purposes of comparison.

Note also that in mathematics, there is no particular concept of negative or positive zero; true mathematical zero has no sign.

License

Copyright © 2002 by Shigeo Kobayashi <[email protected]>.

You may distribute under the terms of either the GNU General Public License or the Artistic License, as specified in the README file of the BigDecimal distribution.

Maintained by mrkn <[email protected]> and ruby-core members.

Documented by zzak <[email protected]>, mathew <[email protected]>, and many other contributors.

Constant Summary collapse

BASE =

Base value used in internal calculations. On a 32 bit system, BASE is 10000, indicating that calculation is done in groups of 4 digits. (If it were larger, BASE**2 wouldn’t fit in 32 bits, so you couldn’t guarantee that two groups could always be multiplied together without overflow.)

INT2FIX((SIGNED_VALUE)VpBaseVal())
EXCEPTION_ALL =

Determines whether overflow, underflow or zero divide result in an exception being thrown. See BigDecimal.mode.

0xff
EXCEPTION_NaN =

Determines what happens when the result of a computation is not a number (NaN). See BigDecimal.mode.

0x02
EXCEPTION_INFINITY =

Determines what happens when the result of a computation is infinity. See BigDecimal.mode.

0x01
EXCEPTION_UNDERFLOW =

Determines what happens when the result of a computation is an underflow (a result too small to be represented). See BigDecimal.mode.

0x04
EXCEPTION_OVERFLOW =

Determines what happens when the result of a computation is an overflow (a result too large to be represented). See BigDecimal.mode.

0x01
EXCEPTION_ZERODIVIDE =

Determines what happens when a division by zero is performed. See BigDecimal.mode.

0x01
ROUND_MODE =

Determines what happens when a result must be rounded in order to fit in the appropriate number of significant digits. See BigDecimal.mode.

0x100
ROUND_UP =

Indicates that values should be rounded away from zero. See BigDecimal.mode.

1
ROUND_DOWN =

Indicates that values should be rounded towards zero. See BigDecimal.mode.

2
ROUND_HALF_UP =

Indicates that digits >= 5 should be rounded up, others rounded down. See BigDecimal.mode.

3
ROUND_HALF_DOWN =

Indicates that digits >= 6 should be rounded up, others rounded down. See BigDecimal.mode.

4
ROUND_CEILING =

Round towards +Infinity. See BigDecimal.mode.

5
ROUND_FLOOR =

Round towards -Infinity. See BigDecimal.mode.

6
ROUND_HALF_EVEN =

Round towards the even neighbor. See BigDecimal.mode.

7
SIGN_NaN =

Indicates that a value is not a number. See BigDecimal.sign.

0
SIGN_POSITIVE_ZERO =

Indicates that a value is +0. See BigDecimal.sign.

1
SIGN_NEGATIVE_ZERO =

Indicates that a value is -0. See BigDecimal.sign.

-1
SIGN_POSITIVE_FINITE =

Indicates that a value is positive and finite. See BigDecimal.sign.

2
SIGN_NEGATIVE_FINITE =

Indicates that a value is negative and finite. See BigDecimal.sign.

-2
SIGN_POSITIVE_INFINITE =

Indicates that a value is positive and infinite. See BigDecimal.sign.

3
SIGN_NEGATIVE_INFINITE =

Indicates that a value is negative and infinite. See BigDecimal.sign.

-3
INFINITY =

Positive infinity value.

BigDecimal_global_new(1, &arg, rb_cBigDecimal)
NAN =

‘Not a Number’ value.

BigDecimal_global_new(1, &arg, rb_cBigDecimal)

Class Method Summary collapse

Instance Method Summary collapse

Constructor Details

#new(initial, digits) ⇒ Object

Create a new BigDecimal object.

initial

The initial value, as an Integer, a Float, a Rational, a BigDecimal, or a String.

If it is a String, spaces are ignored and unrecognized characters terminate the value.

digits

The number of significant digits, as a Fixnum. If omitted or 0, the number of significant digits is determined from the initial value.

The actual number of significant digits used in computation is usually larger than the specified number.

Exceptions

TypeError

If the initial type is neither Fixnum, Bignum, Float, Rational, nor BigDecimal, this exception is raised.

TypeError

If the digits is not a Fixnum, this exception is raised.

ArgumentError

If initial is a Float, and the digits is larger than Float::DIG + 1, this exception is raised.

ArgumentError

If the initial is a Float or Rational, and the digits value is omitted, this exception is raised.



2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
# File 'bigdecimal.c', line 2508

static VALUE
BigDecimal_initialize(int argc, VALUE *argv, VALUE self)
{
    ENTER(1);
    Real *pv = rb_check_typeddata(self, &BigDecimal_data_type);
    Real *x;

    GUARD_OBJ(x, BigDecimal_new(argc, argv));
    if (ToValue(x)) {
	pv = VpCopy(pv, x);
    }
    else {
	VpFree(pv);
	pv = x;
    }
    DATA_PTR(self) = pv;
    pv->obj = self;
    return self;
}

Class Method Details

._load(str) ⇒ Object

Internal method used to provide marshalling support. See the Marshal module.



410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# File 'bigdecimal.c', line 410

static VALUE
BigDecimal_load(VALUE self, VALUE str)
{
    ENTER(2);
    Real *pv;
    unsigned char *pch;
    unsigned char ch;
    unsigned long m=0;

    SafeStringValue(str);
    pch = (unsigned char *)RSTRING_PTR(str);
    /* First get max prec */
    while((*pch) != (unsigned char)'\0' && (ch = *pch++) != (unsigned char)':') {
        if(!ISDIGIT(ch)) {
            rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string");
        }
        m = m*10 + (unsigned long)(ch-'0');
    }
    if (m > VpBaseFig()) m -= VpBaseFig();
    GUARD_OBJ(pv, VpNewRbClass(m, (char *)pch, self));
    m /= VpBaseFig();
    if (m && pv->MaxPrec > m) {
	pv->MaxPrec = m+1;
    }
    return ToValue(pv);
}

.double_figObject

BigDecimal.double_fig

The BigDecimal.double_fig class method returns the number of digits a Float number is allowed to have. The result depends upon the CPU and OS in use.



323
324
325
326
327
# File 'bigdecimal.c', line 323

static VALUE
BigDecimal_double_fig(VALUE self)
{
    return INT2FIX(VpDblFig());
}

.limit(*args) ⇒ Object

BigDecimal.limit(digits)

Limit the number of significant digits in newly created BigDecimal numbers to the specified value. Rounding is performed as necessary, as specified by BigDecimal.mode.

A limit of 0, the default, means no upper limit.

The limit specified by this method takes less priority over any limit specified to instance methods such as ceil, floor, truncate, or round.



2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
# File 'bigdecimal.c', line 2619

static VALUE
BigDecimal_limit(int argc, VALUE *argv, VALUE self)
{
    VALUE  nFig;
    VALUE  nCur = INT2NUM(VpGetPrecLimit());

    if (rb_scan_args(argc, argv, "01", &nFig) == 1) {
	int nf;
	if (NIL_P(nFig)) return nCur;
	Check_Type(nFig, T_FIXNUM);
	nf = FIX2INT(nFig);
	if (nf < 0) {
	    rb_raise(rb_eArgError, "argument must be positive");
	}
	VpSetPrecLimit(nf);
    }
    return nCur;
}

.mode(*args) ⇒ Object

BigDecimal.mode(mode, value)

Controls handling of arithmetic exceptions and rounding. If no value is supplied, the current value is returned.

Six values of the mode parameter control the handling of arithmetic exceptions:

BigDecimal::EXCEPTION_NaN BigDecimal::EXCEPTION_INFINITY BigDecimal::EXCEPTION_UNDERFLOW BigDecimal::EXCEPTION_OVERFLOW BigDecimal::EXCEPTION_ZERODIVIDE BigDecimal::EXCEPTION_ALL

For each mode parameter above, if the value set is false, computation continues after an arithmetic exception of the appropriate type. When computation continues, results are as follows:

EXCEPTION_NaN

NaN

EXCEPTION_INFINITY

+Infinity or -Infinity

EXCEPTION_UNDERFLOW

0

EXCEPTION_OVERFLOW

+Infinity or -Infinity

EXCEPTION_ZERODIVIDE

+Infinity or -Infinity

One value of the mode parameter controls the rounding of numeric values: BigDecimal::ROUND_MODE. The values it can take are:

ROUND_UP, :up

round away from zero

ROUND_DOWN, :down, :truncate

round towards zero (truncate)

ROUND_HALF_UP, :half_up, :default

round towards the nearest neighbor, unless both neighbors are equidistant, in which case round away from zero. (default)

ROUND_HALF_DOWN, :half_down

round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards zero.

ROUND_HALF_EVEN, :half_even, :banker

round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards the even neighbor (Banker’s rounding)

ROUND_CEILING, :ceiling, :ceil

round towards positive infinity (ceil)

ROUND_FLOOR, :floor

round towards negative infinity (floor)



511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
# File 'bigdecimal.c', line 511

static VALUE
BigDecimal_mode(int argc, VALUE *argv, VALUE self)
{
    VALUE which;
    VALUE val;
    unsigned long f,fo;

    rb_scan_args(argc, argv, "11", &which, &val);
    Check_Type(which, T_FIXNUM);
    f = (unsigned long)FIX2INT(which);

    if (f & VP_EXCEPTION_ALL) {
	/* Exception mode setting */
	fo = VpGetException();
	if (val == Qnil) return INT2FIX(fo);
	if (val != Qfalse && val!=Qtrue) {
	    rb_raise(rb_eArgError, "second argument must be true or false");
	    return Qnil; /* Not reached */
	}
	if (f & VP_EXCEPTION_INFINITY) {
	    VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_INFINITY) :
			(fo & (~VP_EXCEPTION_INFINITY))));
	}
	fo = VpGetException();
	if (f & VP_EXCEPTION_NaN) {
	    VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_NaN) :
			(fo & (~VP_EXCEPTION_NaN))));
	}
	fo = VpGetException();
	if (f & VP_EXCEPTION_UNDERFLOW) {
	    VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_UNDERFLOW) :
			(fo & (~VP_EXCEPTION_UNDERFLOW))));
	}
	fo = VpGetException();
	if(f & VP_EXCEPTION_ZERODIVIDE) {
	    VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_ZERODIVIDE) :
			(fo & (~VP_EXCEPTION_ZERODIVIDE))));
	}
	fo = VpGetException();
	return INT2FIX(fo);
    }
    if (VP_ROUND_MODE == f) {
	/* Rounding mode setting */
	unsigned short sw;
	fo = VpGetRoundMode();
	if (NIL_P(val)) return INT2FIX(fo);
	sw = check_rounding_mode(val);
	fo = VpSetRoundMode(sw);
	return INT2FIX(fo);
    }
    rb_raise(rb_eTypeError, "first argument for BigDecimal#mode invalid");
    return Qnil;
}

.save_exception_mode { ... } ⇒ Object

Execute the provided block, but preserve the exception mode

BigDecimal.save_exception_mode do
  BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false)
  BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false)

  BigDecimal.new(BigDecimal('Infinity'))
  BigDecimal.new(BigDecimal('-Infinity'))
  BigDecimal(BigDecimal.new('NaN'))
end

For use with the BigDecimal::EXCEPTION_*

See BigDecimal.mode

Yields:



2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
# File 'bigdecimal.c', line 2679

static VALUE
BigDecimal_save_exception_mode(VALUE self)
{
    unsigned short const exception_mode = VpGetException();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetException(exception_mode);
    if (state) rb_jump_tag(state);
    return ret;
}

.save_limit { ... } ⇒ Object

Execute the provided block, but preserve the precision limit

BigDecimal.limit(100)
puts BigDecimal.limit
BigDecimal.save_limit do
    BigDecimal.limit(200)
    puts BigDecimal.limit
end
puts BigDecimal.limit

Yields:



2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
# File 'bigdecimal.c', line 2729

static VALUE
BigDecimal_save_limit(VALUE self)
{
    size_t const limit = VpGetPrecLimit();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetPrecLimit(limit);
    if (state) rb_jump_tag(state);
    return ret;
}

.save_rounding_mode { ... } ⇒ Object

Execute the provided block, but preserve the rounding mode

BigDecimal.save_rounding_mode do
  BigDecimal.mode(BigDecimal::ROUND_MODE, :up)
  puts BigDecimal.mode(BigDecimal::ROUND_MODE)
end

For use with the BigDecimal::ROUND_*

See BigDecimal.mode

Yields:



2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
# File 'bigdecimal.c', line 2704

static VALUE
BigDecimal_save_rounding_mode(VALUE self)
{
    unsigned short const round_mode = VpGetRoundMode();
    int state;
    VALUE ret = rb_protect(rb_yield, Qnil, &state);
    VpSetRoundMode(round_mode);
    if (state) rb_jump_tag(state);
    return ret;
}

.verObject

Returns the BigDecimal version number.



137
138
139
140
141
142
143
144
145
146
# File 'bigdecimal.c', line 137

static VALUE
BigDecimal_version(VALUE self)
{
    /*
     * 1.0.0: Ruby 1.8.0
     * 1.0.1: Ruby 1.8.1
     * 1.1.0: Ruby 1.9.3
    */
    return rb_str_new2("1.1.0");
}

Instance Method Details

#%Object

%: a%b = a - (a.to_f/b).floor * b



1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
# File 'bigdecimal.c', line 1393

static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
    ENTER(3);
    Real *div = NULL, *mod = NULL;

    if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
	SAVE(div); SAVE(mod);
	return ToValue(mod);
    }
    return DoSomeOne(self, r, '%');
}

#*(r) ⇒ Object

call-seq: mult(value, digits)

Multiply by the specified value.

e.g.

c = a.mult(b,n)
c = a * b
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.



1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
# File 'bigdecimal.c', line 1201

static VALUE
BigDecimal_mult(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    if (RB_TYPE_P(r, T_FLOAT)) {
	b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
	b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
	b = GetVpValue(r,0);
    }

    if (!b) return DoSomeOne(self, r, '*');
    SAVE(b);

    mx = a->Prec + b->Prec;
    GUARD_OBJ(c, VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
    VpMult(c, a, b);
    return ToValue(c);
}

#**(n) ⇒ Object

Returns the value raised to the power of n.

See BigDecimal#power.



2463
2464
2465
2466
2467
# File 'bigdecimal.c', line 2463

static VALUE
BigDecimal_power_op(VALUE self, VALUE exp)
{
    return BigDecimal_power(1, &exp, self);
}

#+(r) ⇒ Object

call-seq: add(value, digits)

Add the specified value.

e.g.

c = a.add(b,n)
c = a + b
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
# File 'bigdecimal.c', line 880

static VALUE
BigDecimal_add(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    if (RB_TYPE_P(r, T_FLOAT)) {
	b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
	b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
	b = GetVpValue(r, 0);
    }

    if (!b) return DoSomeOne(self,r,'+');
    SAVE(b);

    if (VpIsNaN(b)) return b->obj;
    if (VpIsNaN(a)) return a->obj;

    mx = GetAddSubPrec(a, b);
    if (mx == (size_t)-1L) {
	GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
	VpAddSub(c, a, b, 1);
    }
    else {
	GUARD_OBJ(c, VpCreateRbObject(mx * (VpBaseFig() + 1), "0"));
	if(!mx) {
	    VpSetInf(c, VpGetSign(a));
	}
	else {
	    VpAddSub(c, a, b, 1);
	}
    }
    return ToValue(c);
}

#+@Object

Return self.

e.g.

b = +a  # b == a


857
858
859
860
861
# File 'bigdecimal.c', line 857

static VALUE
BigDecimal_uplus(VALUE self)
{
    return self;
}

#-(r) ⇒ Object

a - b -> bigdecimal

Subtract the specified value.

e.g.

c = a - b

The precision of the result value depends on the type of b.

If b is a Float, the precision of the result is Float::DIG+1.

If b is a BigDecimal, the precision of the result is b‘s precision of internal representation from platform. So, it’s return value is platform dependent.



938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
# File 'bigdecimal.c', line 938

static VALUE
BigDecimal_sub(VALUE self, VALUE r)
{
    ENTER(5);
    Real *c, *a, *b;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self,1));
    if (RB_TYPE_P(r, T_FLOAT)) {
	b = GetVpValueWithPrec(r, DBL_DIG+1, 1);
    }
    else if (RB_TYPE_P(r, T_RATIONAL)) {
	b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1);
    }
    else {
	b = GetVpValue(r,0);
    }

    if (!b) return DoSomeOne(self,r,'-');
    SAVE(b);

    if (VpIsNaN(b)) return b->obj;
    if (VpIsNaN(a)) return a->obj;

    mx = GetAddSubPrec(a,b);
    if (mx == (size_t)-1L) {
	GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0"));
	VpAddSub(c, a, b, -1);
    }
    else {
	GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0"));
	if (!mx) {
	    VpSetInf(c,VpGetSign(a));
	}
	else {
	    VpAddSub(c, a, b, -1);
	}
    }
    return ToValue(c);
}

#-@Object

Return the negation of self.

e.g.

b = -a
b == a * -1


1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
# File 'bigdecimal.c', line 1175

static VALUE
BigDecimal_neg(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    GUARD_OBJ(a, GetVpValue(self, 1));
    GUARD_OBJ(c, VpCreateRbObject(a->Prec *(VpBaseFig() + 1), "0"));
    VpAsgn(c, a, -1);
    return ToValue(c);
}

#/Object

For c = self/r: with round operation



1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
# File 'bigdecimal.c', line 1281

static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
    ENTER(5);
    Real *c=NULL, *res=NULL, *div = NULL;
    r = BigDecimal_divide(&c, &res, &div, self, r);
    if (!NIL_P(r)) return r; /* coerced by other */
    SAVE(c); SAVE(res); SAVE(div);
    /* a/b = c + r/b */
    /* c xxxxx
       r 00000yyyyy  ==> (y/b)*BASE >= HALF_BASE
     */
    /* Round */
    if (VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */
	VpInternalRound(c, 0, c->frac[c->Prec-1], (BDIGIT)(VpBaseVal() * (BDIGIT_DBL)res->frac[0] / div->frac[0]));
    }
    return ToValue(c);
}

#<(r) ⇒ Object

a < b

Returns true if a is less than b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).



1121
1122
1123
1124
1125
# File 'bigdecimal.c', line 1121

static VALUE
BigDecimal_lt(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '<');
}

#<=(r) ⇒ Object

a <= b

Returns true if a is less than or equal to b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).



1134
1135
1136
1137
1138
# File 'bigdecimal.c', line 1134

static VALUE
BigDecimal_le(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, 'L');
}

#<=>(r) ⇒ Object

The comparison operator. a <=> b is 0 if a == b, 1 if a > b, -1 if a < b.



1092
1093
1094
1095
1096
# File 'bigdecimal.c', line 1092

static VALUE
BigDecimal_comp(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '*');
}

#==(r) ⇒ Object

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

BigDecimal.new('1.0') == 1.0  #=> true


1108
1109
1110
1111
1112
# File 'bigdecimal.c', line 1108

static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}

#===(r) ⇒ Object

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

BigDecimal.new('1.0') == 1.0  #=> true


1108
1109
1110
1111
1112
# File 'bigdecimal.c', line 1108

static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}

#>(r) ⇒ Object

a > b

Returns true if a is greater than b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce).



1147
1148
1149
1150
1151
# File 'bigdecimal.c', line 1147

static VALUE
BigDecimal_gt(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '>');
}

#>=(r) ⇒ Object

a >= b

Returns true if a is greater than or equal to b.

Values may be coerced to perform the comparison (see ==, BigDecimal#coerce)



1160
1161
1162
1163
1164
# File 'bigdecimal.c', line 1160

static VALUE
BigDecimal_ge(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, 'G');
}

#_dumpObject

Method used to provide marshalling support.

inf = BigDecimal.new('Infinity')
  #=> #<BigDecimal:1e16fa8,'Infinity',9(9)>
BigDecimal._load(inf._dump)
  #=> #<BigDecimal:1df8dc8,'Infinity',9(9)>

See the Marshal module.



388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# File 'bigdecimal.c', line 388

static VALUE
BigDecimal_dump(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *vp;
    char *psz;
    VALUE dummy;
    volatile VALUE dump;

    rb_scan_args(argc, argv, "01", &dummy);
    GUARD_OBJ(vp,GetVpValue(self, 1));
    dump = rb_str_new(0, VpNumOfChars(vp, "E")+50);
    psz = RSTRING_PTR(dump);
    sprintf(psz, "%"PRIuSIZE":", VpMaxPrec(vp)*VpBaseFig());
    VpToString(vp, psz+strlen(psz), 0, 0);
    rb_str_resize(dump, strlen(psz));
    return dump;
}

#absObject

Returns the absolute value, as a BigDecimal.

BigDecimal('5').abs #=> 5
BigDecimal('-3').abs #=> 3


1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
# File 'bigdecimal.c', line 1626

static VALUE
BigDecimal_abs(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec *(VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpAsgn(c, a, 1);
    VpChangeSign(c, 1);
    return ToValue(c);
}

#add(b, n) ⇒ Object

call-seq: add(value, digits)

Add the specified value.

e.g.

c = a.add(b,n)
c = a + b
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.



1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
# File 'bigdecimal.c', line 1556

static VALUE
BigDecimal_add2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = GetPositiveInt(n);
    if (mx == 0) return BigDecimal_add(self, b);
    else {
	size_t pl = VpSetPrecLimit(0);
	VALUE   c = BigDecimal_add(self, b);
	VpSetPrecLimit(pl);
	GUARD_OBJ(cv, GetVpValue(c, 1));
	VpLeftRound(cv, VpGetRoundMode(), mx);
	return ToValue(cv);
    }
}

#ceil(*args) ⇒ Object

ceil(n)

Return the smallest integer greater than or equal to the value, as a BigDecimal.

BigDecimal(‘3.14159’).ceil #=> 4 BigDecimal(‘-9.1’).ceil #=> -9

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).ceil(3) #=> 3.142 BigDecimal(‘13345.234’).ceil(-2) #=> 13400.0



1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
# File 'bigdecimal.c', line 1872

static VALUE
BigDecimal_ceil(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);

    if (rb_scan_args(argc, argv, "01", &vLoc) == 0) {
	iLoc = 0;
    } else {
	Check_Type(vLoc, T_FIXNUM);
	iLoc = FIX2INT(vLoc);
    }

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, VP_ROUND_CEIL, iLoc);
    if (argc == 0) {
	return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}

#coerce(other) ⇒ Object

The coerce method provides support for Ruby type coercion. It is not enabled by default.

This means that binary operations like + * / or - can often be performed on a BigDecimal and an object of another type, if the other object can be coerced into a BigDecimal value.

e.g.

a = BigDecimal.new("1.0")
b = a / 2.0 #=> 0.5

Note that coercing a String to a BigDecimal is not supported by default; it requires a special compile-time option when building Ruby.



824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
# File 'bigdecimal.c', line 824

static VALUE
BigDecimal_coerce(VALUE self, VALUE other)
{
    ENTER(2);
    VALUE obj;
    Real *b;

    if (RB_TYPE_P(other, T_FLOAT)) {
	GUARD_OBJ(b, GetVpValueWithPrec(other, DBL_DIG+1, 1));
	obj = rb_assoc_new(ToValue(b), self);
    }
    else {
	if (RB_TYPE_P(other, T_RATIONAL)) {
	    Real* pv = DATA_PTR(self);
	    GUARD_OBJ(b, GetVpValueWithPrec(other, pv->Prec*VpBaseFig(), 1));
	}
	else {
	    GUARD_OBJ(b, GetVpValue(other, 1));
	}
	obj = rb_assoc_new(b->obj, self);
    }

    return obj;
}

#div(*args) ⇒ Object



1546
1547
1548
1549
1550
1551
1552
1553
1554
# File 'bigdecimal.c', line 1546

static VALUE
BigDecimal_div3(int argc, VALUE *argv, VALUE self)
{
    VALUE b,n;

    rb_scan_args(argc, argv, "11", &b, &n);

    return BigDecimal_div2(self, b, n);
}

#divmod(r) ⇒ Object

divmod(value)

Divides by the specified value, and returns the quotient and modulus as BigDecimal numbers. The quotient is rounded towards negative infinity.

For example:

require 'bigdecimal'

a = BigDecimal.new("42")
b = BigDecimal.new("9")

q, m = a.divmod(b)

c = q * b + m

a == c  #=> true

The quotient q is (a/b).floor, and the modulus is the amount that must be added to q * b to get a.



1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
# File 'bigdecimal.c', line 1491

static VALUE
BigDecimal_divmod(VALUE self, VALUE r)
{
    ENTER(5);
    Real *div = NULL, *mod = NULL;

    if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
	SAVE(div); SAVE(mod);
	return rb_assoc_new(ToValue(div), ToValue(mod));
    }
    return DoSomeOne(self,r,rb_intern("divmod"));
}

#eql?(r) ⇒ Boolean

Tests for value equality; returns true if the values are equal.

The == and === operators and the eql? method have the same implementation for BigDecimal.

Values may be coerced to perform the comparison:

BigDecimal.new('1.0') == 1.0  #=> true

Returns:

  • (Boolean)


1108
1109
1110
1111
1112
# File 'bigdecimal.c', line 1108

static VALUE
BigDecimal_eq(VALUE self, VALUE r)
{
    return BigDecimalCmp(self, r, '=');
}

#exponentObject

Returns the exponent of the BigDecimal number, as an Integer.

If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string of digits with no leading zeros, then n is the exponent.



2060
2061
2062
2063
2064
2065
# File 'bigdecimal.c', line 2060

static VALUE
BigDecimal_exponent(VALUE self)
{
    ssize_t e = VpExponent10(GetVpValue(self, 1));
    return INT2NUM(e);
}

#finite?Boolean

Returns True if the value is finite (not NaN or infinite).

Returns:

  • (Boolean)


655
656
657
658
659
660
661
662
# File 'bigdecimal.c', line 655

static VALUE
BigDecimal_IsFinite(VALUE self)
{
    Real *p = GetVpValue(self, 1);
    if (VpIsNaN(p)) return Qfalse;
    if (VpIsInf(p)) return Qfalse;
    return Qtrue;
}

#fixObject

Return the integer part of the number, as a BigDecimal.



1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
# File 'bigdecimal.c', line 1667

static VALUE
BigDecimal_fix(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec *(VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpActiveRound(c, a, VP_ROUND_DOWN, 0); /* 0: round off */
    return ToValue(c);
}

#floor(*args) ⇒ Object

floor(n)

Return the largest integer less than or equal to the value, as a BigDecimal.

BigDecimal(‘3.14159’).floor #=> 3 BigDecimal(‘-9.1’).floor #=> -10

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).floor(3) #=> 3.141 BigDecimal(‘13345.234’).floor(-2) #=> 13300.0



1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
# File 'bigdecimal.c', line 1824

static VALUE
BigDecimal_floor(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);

    if (rb_scan_args(argc, argv, "01", &vLoc)==0) {
	iLoc = 0;
    }
    else {
	Check_Type(vLoc, T_FIXNUM);
	iLoc = FIX2INT(vLoc);
    }

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, VP_ROUND_FLOOR, iLoc);
#ifdef BIGDECIMAL_DEBUG
    VPrint(stderr, "floor: c=%\n", c);
#endif
    if (argc == 0) {
	return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}

#fracObject

Return the fractional part of the number, as a BigDecimal.



1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
# File 'bigdecimal.c', line 1793

static VALUE
BigDecimal_frac(VALUE self)
{
    ENTER(5);
    Real *c, *a;
    size_t mx;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpFrac(c, a);
    return ToValue(c);
}

#hashObject

Creates a hash for this BigDecimal.

Two BigDecimals with equal sign, fractional part and exponent have the same hash.



359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
# File 'bigdecimal.c', line 359

static VALUE
BigDecimal_hash(VALUE self)
{
    ENTER(1);
    Real *p;
    st_index_t hash;

    GUARD_OBJ(p, GetVpValue(self, 1));
    hash = (st_index_t)p->sign;
    /* hash!=2: the case for 0(1),NaN(0) or +-Infinity(3) is sign itself */
    if(hash == 2 || hash == (st_index_t)-2) {
	hash ^= rb_memhash(p->frac, sizeof(BDIGIT)*p->Prec);
	hash += p->exponent;
    }
    return INT2FIX(hash);
}

#infinite?Boolean

Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or Infinity.

Returns:

  • (Boolean)


645
646
647
648
649
650
651
652
# File 'bigdecimal.c', line 645

static VALUE
BigDecimal_IsInfinite(VALUE self)
{
    Real *p = GetVpValue(self, 1);
    if (VpIsPosInf(p)) return INT2FIX(1);
    if (VpIsNegInf(p)) return INT2FIX(-1);
    return Qnil;
}

#initialize_copy(other) ⇒ Object

:nodoc:

private method to dup and clone the provided BigDecimal other



2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
# File 'bigdecimal.c', line 2532

static VALUE
BigDecimal_initialize_copy(VALUE self, VALUE other)
{
    Real *pv = rb_check_typeddata(self, &BigDecimal_data_type);
    Real *x = rb_check_typeddata(other, &BigDecimal_data_type);

    if (self != other) {
	DATA_PTR(self) = VpCopy(pv, x);
    }
    return self;
}

#inspectObject

Returns debugging information about the value as a string of comma-separated values in angle brackets with a leading #:

BigDecimal.new("1234.5678").inspect
  #=> "#<BigDecimal:b7ea1130,'0.12345678E4',8(12)>"

The first part is the address, the second is the value as a string, and the final part ss(mm) is the current number of significant digits and the maximum number of significant digits, respectively.



2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
# File 'bigdecimal.c', line 2077

static VALUE
BigDecimal_inspect(VALUE self)
{
    ENTER(5);
    Real *vp;
    volatile VALUE obj;
    size_t nc;
    char *psz, *tmp;

    GUARD_OBJ(vp, GetVpValue(self, 1));
    nc = VpNumOfChars(vp, "E");
    nc += (nc + 9) / 10;

    obj = rb_str_new(0, nc+256);
    psz = RSTRING_PTR(obj);
    sprintf(psz, "#<BigDecimal:%"PRIxVALUE",'", self);
    tmp = psz + strlen(psz);
    VpToString(vp, tmp, 10, 0);
    tmp += strlen(tmp);
    sprintf(tmp, "',%"PRIuSIZE"(%"PRIuSIZE")>", VpPrec(vp)*VpBaseFig(), VpMaxPrec(vp)*VpBaseFig());
    rb_str_resize(obj, strlen(psz));
    return obj;
}

#moduloObject

%: a%b = a - (a.to_f/b).floor * b



1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
# File 'bigdecimal.c', line 1393

static VALUE
BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */
{
    ENTER(3);
    Real *div = NULL, *mod = NULL;

    if (BigDecimal_DoDivmod(self, r, &div, &mod)) {
	SAVE(div); SAVE(mod);
	return ToValue(mod);
    }
    return DoSomeOne(self, r, '%');
}

#mult(b, n) ⇒ Object

call-seq: mult(value, digits)

Multiply by the specified value.

e.g.

c = a.mult(b,n)
c = a * b
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.



1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
# File 'bigdecimal.c', line 1604

static VALUE
BigDecimal_mult2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = GetPositiveInt(n);
    if (mx == 0) return BigDecimal_mult(self, b);
    else {
	size_t pl = VpSetPrecLimit(0);
	VALUE   c = BigDecimal_mult(self, b);
	VpSetPrecLimit(pl);
	GUARD_OBJ(cv, GetVpValue(c, 1));
	VpLeftRound(cv, VpGetRoundMode(), mx);
	return ToValue(cv);
    }
}

#nan?Boolean

Returns True if the value is Not a Number.

Returns:

  • (Boolean)


634
635
636
637
638
639
640
# File 'bigdecimal.c', line 634

static VALUE
BigDecimal_IsNaN(VALUE self)
{
    Real *p = GetVpValue(self, 1);
    if (VpIsNaN(p))  return Qtrue;
    return Qfalse;
}

#nonzero?Boolean

Returns self if the value is non-zero, nil otherwise.

Returns:

  • (Boolean)


1082
1083
1084
1085
1086
1087
# File 'bigdecimal.c', line 1082

static VALUE
BigDecimal_nonzero(VALUE self)
{
    Real *a = GetVpValue(self, 1);
    return VpIsZero(a) ? Qnil : self;
}

#power(*args) ⇒ Object

power(n) power(n, prec)

Returns the value raised to the power of n.

Note that n must be an Integer.

Also available as the operator **.



2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
# File 'bigdecimal.c', line 2227

static VALUE
BigDecimal_power(int argc, VALUE*argv, VALUE self)
{
    ENTER(5);
    VALUE vexp, prec;
    Real* exp = NULL;
    Real *x, *y;
    ssize_t mp, ma, n;
    SIGNED_VALUE int_exp;
    double d;

    rb_scan_args(argc, argv, "11", &vexp, &prec);

    GUARD_OBJ(x, GetVpValue(self, 1));
    n = NIL_P(prec) ? (ssize_t)(x->Prec*VpBaseFig()) : NUM2SSIZET(prec);

    if (VpIsNaN(x)) {
	y = VpCreateRbObject(n, "0#");
	RB_GC_GUARD(y->obj);
	VpSetNaN(y);
	return ToValue(y);
    }

  retry:
    switch (TYPE(vexp)) {
      case T_FIXNUM:
	break;

      case T_BIGNUM:
	break;

      case T_FLOAT:
	d = RFLOAT_VALUE(vexp);
	if (d == round(d)) {
	    if (FIXABLE(d)) {
		vexp = LONG2FIX((long)d);
	    }
	    else {
		vexp = rb_dbl2big(d);
	    }
	    goto retry;
	}
	exp = GetVpValueWithPrec(vexp, DBL_DIG+1, 1);
	break;

      case T_RATIONAL:
	if (is_zero(rb_rational_num(vexp))) {
	    if (is_positive(vexp)) {
		vexp = INT2FIX(0);
		goto retry;
	    }
	}
	else if (is_one(rb_rational_den(vexp))) {
	    vexp = rb_rational_num(vexp);
	    goto retry;
	}
	exp = GetVpValueWithPrec(vexp, n, 1);
	break;

      case T_DATA:
	if (is_kind_of_BigDecimal(vexp)) {
	    VALUE zero = INT2FIX(0);
	    VALUE rounded = BigDecimal_round(1, &zero, vexp);
	    if (RTEST(BigDecimal_eq(vexp, rounded))) {
		vexp = BigDecimal_to_i(vexp);
		goto retry;
	    }
	    exp = DATA_PTR(vexp);
	    break;
	}
	/* fall through */
      default:
	rb_raise(rb_eTypeError,
		 "wrong argument type %"PRIsVALUE" (expected scalar Numeric)",
		 RB_OBJ_CLASSNAME(vexp));
    }

    if (VpIsZero(x)) {
	if (is_negative(vexp)) {
	    y = VpCreateRbObject(n, "#0");
	    RB_GC_GUARD(y->obj);
	    if (VpGetSign(x) < 0) {
		if (is_integer(vexp)) {
		    if (is_even(vexp)) {
			/* (-0) ** (-even_integer)  -> Infinity */
			VpSetPosInf(y);
		    }
		    else {
			/* (-0) ** (-odd_integer)  -> -Infinity */
			VpSetNegInf(y);
		    }
		}
		else {
		    /* (-0) ** (-non_integer)  -> Infinity */
		    VpSetPosInf(y);
		}
	    }
	    else {
		/* (+0) ** (-num)  -> Infinity */
		VpSetPosInf(y);
	    }
	    return ToValue(y);
	}
	else if (is_zero(vexp)) {
	    return ToValue(VpCreateRbObject(n, "1"));
	}
	else {
	    return ToValue(VpCreateRbObject(n, "0"));
	}
    }

    if (is_zero(vexp)) {
	return ToValue(VpCreateRbObject(n, "1"));
    }
    else if (is_one(vexp)) {
	return self;
    }

    if (VpIsInf(x)) {
	if (is_negative(vexp)) {
	    if (VpGetSign(x) < 0) {
		if (is_integer(vexp)) {
		    if (is_even(vexp)) {
			/* (-Infinity) ** (-even_integer) -> +0 */
			return ToValue(VpCreateRbObject(n, "0"));
		    }
		    else {
			/* (-Infinity) ** (-odd_integer) -> -0 */
			return ToValue(VpCreateRbObject(n, "-0"));
		    }
		}
		else {
		    /* (-Infinity) ** (-non_integer) -> -0 */
		    return ToValue(VpCreateRbObject(n, "-0"));
		}
	    }
	    else {
		return ToValue(VpCreateRbObject(n, "0"));
	    }
	}
	else {
	    y = VpCreateRbObject(n, "0#");
	    if (VpGetSign(x) < 0) {
		if (is_integer(vexp)) {
		    if (is_even(vexp)) {
			VpSetPosInf(y);
		    }
		    else {
			VpSetNegInf(y);
		    }
		}
		else {
		    /* TODO: support complex */
		    rb_raise(rb_eMathDomainError,
			     "a non-integral exponent for a negative base");
		}
	    }
	    else {
		VpSetPosInf(y);
	    }
	    return ToValue(y);
	}
    }

    if (exp != NULL) {
	return rmpd_power_by_big_decimal(x, exp, n);
    }
    else if (RB_TYPE_P(vexp, T_BIGNUM)) {
	VALUE abs_value = BigDecimal_abs(self);
	if (is_one(abs_value)) {
	    return ToValue(VpCreateRbObject(n, "1"));
	}
	else if (RTEST(rb_funcall(abs_value, '<', 1, INT2FIX(1)))) {
	    if (is_negative(vexp)) {
		y = VpCreateRbObject(n, "0#");
		if (is_even(vexp)) {
		    VpSetInf(y, VpGetSign(x));
		}
		else {
		    VpSetInf(y, -VpGetSign(x));
		}
		return ToValue(y);
	    }
	    else if (VpGetSign(x) < 0 && is_even(vexp)) {
		return ToValue(VpCreateRbObject(n, "-0"));
	    }
	    else {
		return ToValue(VpCreateRbObject(n, "0"));
	    }
	}
	else {
	    if (is_positive(vexp)) {
		y = VpCreateRbObject(n, "0#");
		if (is_even(vexp)) {
		    VpSetInf(y, VpGetSign(x));
		}
		else {
		    VpSetInf(y, -VpGetSign(x));
		}
		return ToValue(y);
	    }
	    else if (VpGetSign(x) < 0 && is_even(vexp)) {
		return ToValue(VpCreateRbObject(n, "-0"));
	    }
	    else {
		return ToValue(VpCreateRbObject(n, "0"));
	    }
	}
    }

    int_exp = FIX2LONG(vexp);
    ma = int_exp;
    if (ma <  0) ma = -ma;
    if (ma == 0) ma = 1;

    if (VpIsDef(x)) {
	mp = x->Prec * (VpBaseFig() + 1);
	GUARD_OBJ(y, VpCreateRbObject(mp * (ma + 1), "0"));
    }
    else {
	GUARD_OBJ(y, VpCreateRbObject(1, "0"));
    }
    VpPower(y, x, int_exp);
    if (!NIL_P(prec) && VpIsDef(y)) {
	VpMidRound(y, VpGetRoundMode(), n);
    }
    return ToValue(y);
}

#precsObject

precs

Returns an Array of two Integer values.

The first value is the current number of significant digits in the BigDecimal. The second value is the maximum number of significant digits for the BigDecimal.



338
339
340
341
342
343
344
345
346
347
348
349
# File 'bigdecimal.c', line 338

static VALUE
BigDecimal_prec(VALUE self)
{
    ENTER(1);
    Real *p;
    VALUE obj;

    GUARD_OBJ(p, GetVpValue(self, 1));
    obj = rb_assoc_new(INT2NUM(p->Prec*VpBaseFig()),
		       INT2NUM(p->MaxPrec*VpBaseFig()));
    return obj;
}

#quoObject

For c = self/r: with round operation



1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
# File 'bigdecimal.c', line 1281

static VALUE
BigDecimal_div(VALUE self, VALUE r)
/* For c = self/r: with round operation */
{
    ENTER(5);
    Real *c=NULL, *res=NULL, *div = NULL;
    r = BigDecimal_divide(&c, &res, &div, self, r);
    if (!NIL_P(r)) return r; /* coerced by other */
    SAVE(c); SAVE(res); SAVE(div);
    /* a/b = c + r/b */
    /* c xxxxx
       r 00000yyyyy  ==> (y/b)*BASE >= HALF_BASE
     */
    /* Round */
    if (VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */
	VpInternalRound(c, 0, c->frac[c->Prec-1], (BDIGIT)(VpBaseVal() * (BDIGIT_DBL)res->frac[0] / div->frac[0]));
    }
    return ToValue(c);
}

#remainderObject

remainder



1459
1460
1461
1462
1463
1464
1465
1466
1467
# File 'bigdecimal.c', line 1459

static VALUE
BigDecimal_remainder(VALUE self, VALUE r) /* remainder */
{
    VALUE  f;
    Real  *d, *rv = 0;
    f = BigDecimal_divremain(self, r, &d, &rv);
    if (!NIL_P(f)) return f;
    return ToValue(rv);
}

#round(*args) ⇒ Object

round(n, mode)

Round to the nearest integer (by default), returning the result as a BigDecimal.

BigDecimal(‘3.14159’).round #=> 3 BigDecimal(‘8.7’).round #=> 9 BigDecimal(‘-9.9’).round #=> -10

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).round(3) #=> 3.142 BigDecimal(‘13345.234’).round(-2) #=> 13300.0

The value of the optional mode argument can be used to determine how rounding is performed; see BigDecimal.mode.



1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
# File 'bigdecimal.c', line 1703

static VALUE
BigDecimal_round(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real   *c, *a;
    int    iLoc = 0;
    VALUE  vLoc;
    VALUE  vRound;
    size_t mx, pl;

    unsigned short sw = VpGetRoundMode();

    switch (rb_scan_args(argc, argv, "02", &vLoc, &vRound)) {
      case 0:
	iLoc = 0;
	break;
      case 1:
	Check_Type(vLoc, T_FIXNUM);
	iLoc = FIX2INT(vLoc);
	break;
      case 2:
	Check_Type(vLoc, T_FIXNUM);
	iLoc = FIX2INT(vLoc);
	sw = check_rounding_mode(vRound);
	break;
      default:
	break;
    }

    pl = VpSetPrecLimit(0);
    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, sw, iLoc);
    if (argc == 0) {
	return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}

#signObject

Returns the sign of the value.

Returns a positive value if > 0, a negative value if < 0, and a zero if == 0.

The specific value returned indicates the type and sign of the BigDecimal, as follows:

BigDecimal::SIGN_NaN

value is Not a Number

BigDecimal::SIGN_POSITIVE_ZERO

value is +0

BigDecimal::SIGN_NEGATIVE_ZERO

value is -0

BigDecimal::SIGN_POSITIVE_INFINITE

value is +Infinity

BigDecimal::SIGN_NEGATIVE_INFINITE

value is -Infinity

BigDecimal::SIGN_POSITIVE_FINITE

value is positive

BigDecimal::SIGN_NEGATIVE_FINITE

value is negative



2654
2655
2656
2657
2658
2659
# File 'bigdecimal.c', line 2654

static VALUE
BigDecimal_sign(VALUE self)
{ /* sign */
    int s = GetVpValue(self, 1)->sign;
    return INT2FIX(s);
}

#splitObject

Splits a BigDecimal number into four parts, returned as an array of values.

The first value represents the sign of the BigDecimal, and is -1 or 1, or 0 if the BigDecimal is Not a Number.

The second value is a string representing the significant digits of the BigDecimal, with no leading zeros.

The third value is the base used for arithmetic (currently always 10) as an Integer.

The fourth value is an Integer exponent.

If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the string of significant digits with no leading zeros, and n is the exponent.

From these values, you can translate a BigDecimal to a float as follows:

sign, significant_digits, base, exponent = a.split
f = sign * "0.#{significant_digits}".to_f * (base ** exponent)

(Note that the to_f method is provided as a more convenient way to translate a BigDecimal to a Float.)



2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
# File 'bigdecimal.c', line 2023

static VALUE
BigDecimal_split(VALUE self)
{
    ENTER(5);
    Real *vp;
    VALUE obj,str;
    ssize_t e, s;
    char *psz1;

    GUARD_OBJ(vp, GetVpValue(self, 1));
    str = rb_str_new(0, VpNumOfChars(vp, "E"));
    psz1 = RSTRING_PTR(str);
    VpSzMantissa(vp, psz1);
    s = 1;
    if(psz1[0] == '-') {
	size_t len = strlen(psz1 + 1);

	memmove(psz1, psz1 + 1, len);
	psz1[len] = '\0';
        s = -1;
    }
    if (psz1[0] == 'N') s = 0; /* NaN */
    e = VpExponent10(vp);
    obj = rb_ary_new2(4);
    rb_ary_push(obj, INT2FIX(s));
    rb_ary_push(obj, str);
    rb_str_resize(str, strlen(psz1));
    rb_ary_push(obj, INT2FIX(10));
    rb_ary_push(obj, INT2NUM(e));
    return obj;
}

#sqrt(nFig) ⇒ Object

sqrt(n)

Returns the square root of the value.

Result has at least n significant digits.



1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
# File 'bigdecimal.c', line 1648

static VALUE
BigDecimal_sqrt(VALUE self, VALUE nFig)
{
    ENTER(5);
    Real *c, *a;
    size_t mx, n;

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);

    n = GetPositiveInt(nFig) + VpDblFig() + BASE_FIG;
    if (mx <= n) mx = n;
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSqrt(c, a);
    return ToValue(c);
}

#sub(b, n) ⇒ Object

sub(value, digits) -> bigdecimal

Subtract the specified value.

e.g.

c = a.sub(b,n)
digits

If specified and less than the number of significant digits of the result, the result is rounded to that number of digits, according to BigDecimal.mode.



1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
# File 'bigdecimal.c', line 1586

static VALUE
BigDecimal_sub2(VALUE self, VALUE b, VALUE n)
{
    ENTER(2);
    Real *cv;
    SIGNED_VALUE mx = GetPositiveInt(n);
    if (mx == 0) return BigDecimal_sub(self, b);
    else {
	size_t pl = VpSetPrecLimit(0);
	VALUE   c = BigDecimal_sub(self, b);
	VpSetPrecLimit(pl);
	GUARD_OBJ(cv, GetVpValue(c, 1));
	VpLeftRound(cv, VpGetRoundMode(), mx);
	return ToValue(cv);
    }
}

#to_dObject

call-seq:

a.to_d -> bigdecimal

Returns self.



97
98
99
# File 'lib/bigdecimal/util.rb', line 97

def to_d
  self
end

#to_digitsObject

call-seq:

a.to_digits -> string

Converts a BigDecimal to a String of the form “nnnnnn.mmm”. This method is deprecated; use BigDecimal#to_s(“F”) instead.

require 'bigdecimal'
require 'bigdecimal/util'

d = BigDecimal.new("3.14")
d.to_digits
# => "3.14"


83
84
85
86
87
88
89
90
91
# File 'lib/bigdecimal/util.rb', line 83

def to_digits
  if self.nan? || self.infinite? || self.zero?
    self.to_s
  else
    i       = self.to_i.to_s
    _,f,_,z = self.frac.split
    i + "." + ("0"*(-z)) + f
  end
end

#to_fObject

Returns a new Float object having approximately the same value as the BigDecimal number. Normal accuracy limits and built-in errors of binary Float arithmetic apply.



731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
# File 'bigdecimal.c', line 731

static VALUE
BigDecimal_to_f(VALUE self)
{
    ENTER(1);
    Real *p;
    double d;
    SIGNED_VALUE e;
    char *buf;
    volatile VALUE str;

    GUARD_OBJ(p, GetVpValue(self, 1));
    if (VpVtoD(&d, &e, p) != 1)
	return rb_float_new(d);
    if (e > (SIGNED_VALUE)(DBL_MAX_10_EXP+BASE_FIG))
	goto overflow;
    if (e < (SIGNED_VALUE)(DBL_MIN_10_EXP-BASE_FIG))
	goto underflow;

    str = rb_str_new(0, VpNumOfChars(p, "E"));
    buf = RSTRING_PTR(str);
    VpToString(p, buf, 0, 0);
    errno = 0;
    d = strtod(buf, 0);
    if (errno == ERANGE) {
	if (d == 0.0) goto underflow;
	if (fabs(d) >= HUGE_VAL) goto overflow;
    }
    return rb_float_new(d);

overflow:
    VpException(VP_EXCEPTION_OVERFLOW, "BigDecimal to Float conversion", 0);
    if (p->sign >= 0)
	return rb_float_new(VpGetDoublePosInf());
    else
	return rb_float_new(VpGetDoubleNegInf());

underflow:
    VpException(VP_EXCEPTION_UNDERFLOW, "BigDecimal to Float conversion", 0);
    if (p->sign >= 0)
	return rb_float_new(0.0);
    else
	return rb_float_new(-0.0);
}

#to_iObject

Returns the value as an integer (Fixnum or Bignum).

If the BigNumber is infinity or NaN, raises FloatDomainError.



684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
# File 'bigdecimal.c', line 684

static VALUE
BigDecimal_to_i(VALUE self)
{
    ENTER(5);
    ssize_t e, nf;
    Real *p;

    GUARD_OBJ(p, GetVpValue(self, 1));
    BigDecimal_check_num(p);

    e = VpExponent10(p);
    if (e <= 0) return INT2FIX(0);
    nf = VpBaseFig();
    if (e <= nf) {
        return LONG2NUM((long)(VpGetSign(p) * (BDIGIT_DBL_SIGNED)p->frac[0]));
    }
    else {
	VALUE a = BigDecimal_split(self);
	VALUE digits = RARRAY_AREF(a, 1);
	VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0);
	VALUE ret;
	ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits);

	if (VpGetSign(p) < 0) {
	    numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
	}
	if (dpower < 0) {
	    ret = rb_funcall(numerator, rb_intern("div"), 1,
			      rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					 INT2FIX(-dpower)));
	}
	else {
	    ret = rb_funcall(numerator, '*', 1,
			     rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					INT2FIX(dpower)));
	}
	if (RB_TYPE_P(ret, T_FLOAT)) {
	    rb_raise(rb_eFloatDomainError, "Infinity");
	}
	return ret;
    }
}

#to_intObject

Returns the value as an integer (Fixnum or Bignum).

If the BigNumber is infinity or NaN, raises FloatDomainError.



684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
# File 'bigdecimal.c', line 684

static VALUE
BigDecimal_to_i(VALUE self)
{
    ENTER(5);
    ssize_t e, nf;
    Real *p;

    GUARD_OBJ(p, GetVpValue(self, 1));
    BigDecimal_check_num(p);

    e = VpExponent10(p);
    if (e <= 0) return INT2FIX(0);
    nf = VpBaseFig();
    if (e <= nf) {
        return LONG2NUM((long)(VpGetSign(p) * (BDIGIT_DBL_SIGNED)p->frac[0]));
    }
    else {
	VALUE a = BigDecimal_split(self);
	VALUE digits = RARRAY_AREF(a, 1);
	VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0);
	VALUE ret;
	ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits);

	if (VpGetSign(p) < 0) {
	    numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
	}
	if (dpower < 0) {
	    ret = rb_funcall(numerator, rb_intern("div"), 1,
			      rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					 INT2FIX(-dpower)));
	}
	else {
	    ret = rb_funcall(numerator, '*', 1,
			     rb_funcall(INT2FIX(10), rb_intern("**"), 1,
					INT2FIX(dpower)));
	}
	if (RB_TYPE_P(ret, T_FLOAT)) {
	    rb_raise(rb_eFloatDomainError, "Infinity");
	}
	return ret;
    }
}

#to_rObject

Converts a BigDecimal to a Rational.



778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
# File 'bigdecimal.c', line 778

static VALUE
BigDecimal_to_r(VALUE self)
{
    Real *p;
    ssize_t sign, power, denomi_power;
    VALUE a, digits, numerator;

    p = GetVpValue(self, 1);
    BigDecimal_check_num(p);

    sign = VpGetSign(p);
    power = VpExponent10(p);
    a = BigDecimal_split(self);
    digits = RARRAY_AREF(a, 1);
    denomi_power = power - RSTRING_LEN(digits);
    numerator = rb_funcall(digits, rb_intern("to_i"), 0);

    if (sign < 0) {
	numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1));
    }
    if (denomi_power < 0) {
	return rb_Rational(numerator,
			   rb_funcall(INT2FIX(10), rb_intern("**"), 1,
				      INT2FIX(-denomi_power)));
    }
    else {
	return rb_Rational1(rb_funcall(numerator, '*', 1,
				       rb_funcall(INT2FIX(10), rb_intern("**"), 1,
						  INT2FIX(denomi_power))));
    }
}

#to_s(*args) ⇒ Object

to_s(s)

Converts the value to a string.

The default format looks like 0.xxxxEnn.

The optional parameter s consists of either an integer; or an optional ‘+’ or ‘ ’, followed by an optional number, followed by an optional ‘E’ or ‘F’.

If there is a ‘+’ at the start of s, positive values are returned with a leading ‘+’.

A space at the start of s returns positive values with a leading space.

If s contains a number, a space is inserted after each group of that many fractional digits.

If s ends with an ‘E’, engineering notation (0.xxxxEnn) is used.

If s ends with an ‘F’, conventional floating point notation is used.

Examples:

BigDecimal.new('-123.45678901234567890').to_s('5F')
  #=> '-123.45678 90123 45678 9'

BigDecimal.new('123.45678901234567890').to_s('+8F')
  #=> '+123.45678901 23456789'

BigDecimal.new('123.45678901234567890').to_s(' F')
  #=> ' 123.4567890123456789'


1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
# File 'bigdecimal.c', line 1932

static VALUE
BigDecimal_to_s(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    int   fmt = 0;   /* 0:E format */
    int   fPlus = 0; /* =0:default,=1: set ' ' before digits ,set '+' before digits. */
    Real  *vp;
    volatile VALUE str;
    char  *psz;
    char   ch;
    size_t nc, mc = 0;
    VALUE  f;

    GUARD_OBJ(vp, GetVpValue(self, 1));

    if (rb_scan_args(argc, argv, "01", &f) == 1) {
	if (RB_TYPE_P(f, T_STRING)) {
	    SafeStringValue(f);
	    psz = RSTRING_PTR(f);
	    if (*psz == ' ') {
		fPlus = 1;
		psz++;
	    }
	    else if (*psz == '+') {
		fPlus = 2;
		psz++;
	    }
	    while ((ch = *psz++) != 0) {
		if (ISSPACE(ch)) {
		    continue;
		}
		if (!ISDIGIT(ch)) {
		    if (ch == 'F' || ch == 'f') {
			fmt = 1; /* F format */
		    }
		    break;
		}
		mc = mc*10 + ch - '0';
	    }
	}
	else {
	    mc = (size_t)GetPositiveInt(f);
	}
    }
    if (fmt) {
	nc = VpNumOfChars(vp, "F");
    }
    else {
	nc = VpNumOfChars(vp, "E");
    }
    if (mc > 0) {
	nc += (nc + mc - 1) / mc + 1;
    }

    str = rb_str_new(0, nc);
    psz = RSTRING_PTR(str);

    if (fmt) {
	VpToFString(vp, psz, mc, fPlus);
    }
    else {
	VpToString (vp, psz, mc, fPlus);
    }
    rb_str_resize(str, strlen(psz));
    return str;
}

#truncate(*args) ⇒ Object

truncate(n)

Truncate to the nearest integer (by default), returning the result as a BigDecimal.

BigDecimal(‘3.14159’).truncate #=> 3 BigDecimal(‘8.7’).truncate #=> 8 BigDecimal(‘-9.9’).truncate #=> -9

If n is specified and positive, the fractional part of the result has no more than that many digits.

If n is specified and negative, at least that many digits to the left of the decimal point will be 0 in the result.

BigDecimal(‘3.14159’).truncate(3) #=> 3.141 BigDecimal(‘13345.234’).truncate(-2) #=> 13300.0



1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
# File 'bigdecimal.c', line 1763

static VALUE
BigDecimal_truncate(int argc, VALUE *argv, VALUE self)
{
    ENTER(5);
    Real *c, *a;
    int iLoc;
    VALUE vLoc;
    size_t mx, pl = VpSetPrecLimit(0);

    if (rb_scan_args(argc, argv, "01", &vLoc) == 0) {
	iLoc = 0;
    }
    else {
	Check_Type(vLoc, T_FIXNUM);
	iLoc = FIX2INT(vLoc);
    }

    GUARD_OBJ(a, GetVpValue(self, 1));
    mx = a->Prec * (VpBaseFig() + 1);
    GUARD_OBJ(c, VpCreateRbObject(mx, "0"));
    VpSetPrecLimit(pl);
    VpActiveRound(c, a, VP_ROUND_DOWN, iLoc); /* 0: truncate */
    if (argc == 0) {
	return BigDecimal_to_i(ToValue(c));
    }
    return ToValue(c);
}

#zero?Boolean

Returns True if the value is zero.

Returns:

  • (Boolean)


1074
1075
1076
1077
1078
1079
# File 'bigdecimal.c', line 1074

static VALUE
BigDecimal_zero(VALUE self)
{
    Real *a = GetVpValue(self, 1);
    return VpIsZero(a) ? Qtrue : Qfalse;
}