Class: Mspire::MolecularFormula

Inherits:
Hash
  • Object
show all
Defined in:
lib/mspire/molecular_formula.rb,
lib/mspire/isotope/distribution.rb

Instance Attribute Summary collapse

Class Method Summary collapse

Instance Method Summary collapse

Methods inherited from Hash

#inverse

Constructor Details

#initialize(hash = {}, charge = 0) ⇒ MolecularFormula

Takes a hash and an optional Integer expressing the charge

{h: 22, c: 12, n: 1, o: 3, s: 2}  # case and string/sym doesn't matter


45
46
47
48
# File 'lib/mspire/molecular_formula.rb', line 45

def initialize(hash={}, charge=0)
  @charge = charge
  self.merge!(hash)
end

Instance Attribute Details

#chargeObject

integer desribing the charge state mass calculations will add/remove electron mass from this



41
42
43
# File 'lib/mspire/molecular_formula.rb', line 41

def charge
  @charge
end

Class Method Details

.from_aaseq(aaseq) ⇒ Object



8
9
10
11
12
13
14
15
# File 'lib/mspire/molecular_formula.rb', line 8

def from_aaseq(aaseq)
  hash = aaseq.each_char.inject({}) do |hash,aa| 
    hash.merge(Mspire::Isotope::AA::FORMULAS[aa]) {|h,o,n| (o ? o : 0) +n }
  end
  hash[:h] += 2
  hash[:o] += 1
  self.new(hash)
end

.from_any(arg, charge = 0) ⇒ Object Also known as: []

arg may be a String, Hash, or MolecularFormula object.



28
29
30
31
32
33
34
# File 'lib/mspire/molecular_formula.rb', line 28

def from_any(arg, charge=0)
  if arg.is_a?(String)
    from_string(arg, charge)
  else
    self.new(arg, arg.respond_to?(:charge) ? arg.charge : 0)
  end
end

.from_string(mol_form_str, charge = 0) ⇒ Object

takes a string, with properly capitalized elements making up the formula. The elements may be in any order.



19
20
21
22
23
24
25
# File 'lib/mspire/molecular_formula.rb', line 19

def from_string(mol_form_str, charge=0)
  mf = self.new({}, charge)
  mol_form_str.scan(/([A-Z][a-z]?)(\d*)/).each do |k,v| 
    mf[k.downcase.to_sym] = (v == '' ? 1 : v.to_i)
  end
  mf
end

Instance Method Details

#*(int) ⇒ Object



86
87
88
# File 'lib/mspire/molecular_formula.rb', line 86

def *(int)
  self.dup.mul!(int)
end

#+(*others) ⇒ Object

returns a new formula object where all the atoms have been added up



51
52
53
# File 'lib/mspire/molecular_formula.rb', line 51

def +(*others)
  self.dup.add!(*others)
end

#-(*others) ⇒ Object

returns a new formula object where all the formulas have been subtracted from the caller



66
67
68
# File 'lib/mspire/molecular_formula.rb', line 66

def -(*others)
  self.dup.sub!(*others)
end

#/(int) ⇒ Object



99
100
101
# File 'lib/mspire/molecular_formula.rb', line 99

def /(int)
  self.dup.div!(int)
end

#==(other) ⇒ Object



157
158
159
# File 'lib/mspire/molecular_formula.rb', line 157

def ==(other)
  old_equal(other) && self.charge == other.charge
end

#add!(*others) ⇒ Object

returns self



56
57
58
59
60
61
62
# File 'lib/mspire/molecular_formula.rb', line 56

def add!(*others)
  others.each do |other|
    self.merge!(other) {|key, oldval, newval| self[key] = oldval + newval }
    self.charge += other.charge
  end
  self
end

#avg_massObject



126
127
128
# File 'lib/mspire/molecular_formula.rb', line 126

def avg_mass
  inject(0.0) {|sum,(el,cnt)| sum + (Mspire::Mass::AVG[el]*cnt) }
end

#div!(int, also_do_charge = true) ⇒ Object

Raises:

  • (ArgumentError)


103
104
105
106
107
108
109
110
111
112
113
114
115
116
# File 'lib/mspire/molecular_formula.rb', line 103

def div!(int, also_do_charge=true)
  raise ArgumentError, "must be an integer" unless int.is_a?(Integer)
  self.each do |k,v|
    quotient, modulus = v.divmod(int)
    raise ArgumentError "all numbers must be divisible by int" unless modulus == 0
    self[k] = quotient
  end
  if also_do_charge
    quotient, modulus = self.charge.divmod(int) 
    raise ArgumentError "charge must be divisible by int" unless modulus == 0
    self.charge = quotient
  end
  self
end

#isotope_distribution(normalize = Mspire::Isotope::Distribution::NORMALIZE, percent_cutoff = nil) ⇒ Object

takes any element composition (see any_to_num_elements).

returns isotopic distribution beginning with monoisotopic peak. It cuts off when no more peaks contribute more than percent_cutoff to the total distribution. After that, normalization is performed.

all values will be fractional. normalize may be one of:

:total   normalize to the total intensity
:max     normalize to the highest peak intensity
:first   normalize to the intensity of the first peak 
        (this is typically the monoisotopic peak)


32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# File 'lib/mspire/isotope/distribution.rb', line 32

def isotope_distribution(normalize=Mspire::Isotope::Distribution::NORMALIZE, percent_cutoff=nil)
  mono_dist = raw_isotope_distribution

  if percent_cutoff
    total_signal = mono_dist.reduce(:+)
    cutoff_index = (mono_dist.size-1).downto(0).find do |i|
      (mono_dist[i] / total_signal) >= (percent_cutoff/100.0)
    end
    # deletes these elements
    if cutoff_index
      mono_dist.slice!((cutoff_index+1)..-1)
    else
      # no peaks pass that percent cutoff threshold!
      mono_dist = []
    end
  end

  # normalization
  norm_by =
    case normalize
    when :total
      total_signal || mono_dist.reduce(:+)
    when :max
      mono_dist.max
    when :first
      mono_dist.first
    end
  mono_dist.map do |i| 
    v = i / norm_by
    (v > 0) ? v : 0
  end
end

#isotope_distribution_spectrum(*args) ⇒ Object

returns a spectrum object with mass values and intensity values. Arguments are passed directly to isotope_distribution. the molecule has a charge, this will be used to adjust the m/z values (by removing or adding electrons to the m/z and as the z)



69
70
71
72
73
74
75
76
77
78
79
80
81
82
# File 'lib/mspire/isotope/distribution.rb', line 69

def isotope_distribution_spectrum(*args)
  intensities = isotope_distribution(*args)
  mono = self.map {|el,cnt| Mspire::Mass::MONO[el]*cnt }.reduce(:+)
  masses = Array.new(intensities.size)
  neutron = Mspire::Mass::NEUTRON
  masses[0] = mono
  (1...masses.size).each {|i| masses[i] = masses[i-1] + neutron }
  if self.charge && self.charge != 0
    masses.map! do |mass| 
      (mass - (self.charge * Mspire::Mass::ELECTRON)) / self.charge 
    end
  end
  Mspire::Spectrum.new [masses, intensities]
end

#mass(consider_electron_masses = true) ⇒ Object

gives the monoisotopic mass adjusted by the current charge (i.e., adds/subtracts electron masses for the charges)



120
121
122
123
124
# File 'lib/mspire/molecular_formula.rb', line 120

def mass(consider_electron_masses = true)
  mss = inject(0.0) {|sum,(el,cnt)| sum + (Mspire::Mass::MONO[el]*cnt) }
  mss -= (Mspire::Mass::ELECTRON * charge) if consider_electron_masses
  mss
end

#mul!(int, also_do_charge = true) ⇒ Object

Raises:

  • (ArgumentError)


90
91
92
93
94
95
96
97
# File 'lib/mspire/molecular_formula.rb', line 90

def mul!(int, also_do_charge=true)
  raise ArgumentError, "must be an integer" unless int.is_a?(Integer)
  self.each do |k,v|
    self[k] = v * int
  end
  self.charge *= int if also_do_charge
  self
end

#mz(consider_electron_masses = true) ⇒ Object

returns nil if the charge == 0



131
132
133
134
135
136
137
# File 'lib/mspire/molecular_formula.rb', line 131

def mz(consider_electron_masses = true)
  if charge == 0
    nil
  else
    mass(consider_electron_masses) / charge
  end
end

#raw_isotope_distributionObject

returns relative ratios from low nominal mass to high nominal mass. These are not normalized at all.



86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# File 'lib/mspire/isotope/distribution.rb', line 86

def raw_isotope_distribution
  low_nominal = 0
  high_nominal = 0
  self.each do |el,cnt|
    isotopes = Mspire::Isotope::BY_ELEMENT[el]
    low_nominal += (isotopes.first.mass_number * cnt)
    high_nominal += (isotopes.last.mass_number * cnt)
  end

  ffts = self.map do |el, cnt|
    isotope_el_ar = NArray.float(high_nominal+1)
    Mspire::Isotope::BY_ELEMENT[el].each do |isotope|
      isotope_el_ar[isotope.mass_number] = isotope.relative_abundance
    end
    FFTW3.fft(isotope_el_ar)**cnt
  end
  FFTW3.ifft(ffts.reduce(:*)).real.to_a[low_nominal..high_nominal]
end

#sub!(*others) ⇒ Object



70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# File 'lib/mspire/molecular_formula.rb', line 70

def sub!(*others)
  others.each do |other|
    oth = other.dup
    self.each do |k,v|
      if oth.key?(k)
        self[k] -= oth.delete(k)
      end
    end
    oth.each do |k,v|
      self[k] = -v
    end
    self.charge -= other.charge
  end
  self
end

#to_hashObject



151
152
153
# File 'lib/mspire/molecular_formula.rb', line 151

def to_hash
  Hash[ self ]
end

#to_s(alphabetize = true) ⇒ Object



139
140
141
142
143
144
145
146
147
148
149
# File 'lib/mspire/molecular_formula.rb', line 139

def to_s(alphabetize=true)
  h = alphabetize ? self.sort : self
  st = ''
  h.each do |k,v|
    if v > 0
      st << k.to_s.capitalize
      st << v.to_s if v > 1
    end
  end 
  st
end