Class: CodeRunner::Gs2

Inherits:
Run::FortranNamelist
  • Object
show all
Includes:
FixNormOption, GSLComplexTensors, GSLMatrices, GSLTensors, GSLVectorComplexes, GSLVectors, GraphKits
Defined in:
lib/gs2crmod/gs2.rb,
lib/gs2crmod/ingen.rb,
lib/gs2crmod/graphs.rb,
lib/gs2crmod/test_gs2.rb,
lib/gs2crmod/properties.rb,
lib/gs2crmod/gsl_data_3d.rb,
lib/gs2crmod/calculations.rb,
lib/gs2crmod/check_convergence.rb,
lib/gs2crmod/gsl_data.rb

Overview

This is a customised subclass of CodeRunner::Run which allows CodeRunner to submit and analyse simulations from the gyrokinetic flux tube code GS2, which is principally used for simulating plasmas in magnetic confinement fusion.

It performs two distinct roles: submitting simulations and analysing the data.

Submitting Simulations

This principally involves generating the input file, which is a very nontrivial task. In order to do this, it maintains a complete record of every possible input parameter for GS2, as well as what datatype that parameter is, and sometimes what values it is allowed to take. This allows that not only to generate the input file, but to check that the input file makes sense. However, although generating the input file works beautifully, the set of sanity checks that it makes is not exhaustive: intelligent use is still required!

In tandem with this, it maintains a whole set of tools for manipulating its database of input parameters. This includes updating their allowed values and also editing and accessing help for every input parameter.

Analysing Simulations

The amount of analysis possible on GS2 data is enormous, and CodeRunner hasn’t got close to getting there. What it can do is:

  • Check if the run is complete by comparing the number of completed timesteps against nstep

  • Calculate growth rates for linear runs.

  • Check if non-linear runs have saturated and calculate fluxes for those runs.

  • Automatically plot a huge variety of different graphs, ranging from simple plots of heat flux versus time to three-dimensional plots of the spectrum and potential.

Direct Known Subclasses

Astrogk

Defined Under Namespace

Modules: FixNormOption, GSLComplexTensors, GSLMatrices, GSLTensors, GSLVectorComplexes, GSLVectors, TestGs2 Classes: Astrogk, GraphKits, InputFileError, ListSubmitter, Phi

Constant Summary collapse

GS2_CRMOD_VERSION =
Version.new(Gem.loaded_specs['gs2crmod'].version.to_s)
CODE_SCRIPT_FOLDER =
MODULE_FOLDER = File.dirname(File.expand_path(__FILE__))
NaN =
GSL::NAN
SPECIES_DEPENDENT_NAMELISTS =
eval(File.read(folder + '/species_dependent_namelists.rb'), binding, folder + '/species_dependent_namelists.rb')
SPECIES_DEPENDENT_VARIABLES_WITH_HELP =
SPECIES_DEPENDENT_NAMELISTS.values.inject({}) do |hash, namelist_hash|
	namelist_hash[:variables].each do |var, var_hash|
			hash[var] = var_hash[:help]
	end
	hash
end
SPECIES_DEPENDENT_VARIABLES =
SPECIES_DEPENDENT_VARIABLES_WITH_HELP.keys
MAX_NAME_SIZE =
310
AxisKit =

one day someone should get rid of this!

GraphKit::AxisKit
DataKit =
GraphKit::DataKit
GRAPHKIT_OPTIONS_HELP =
{
	t_index_window: "[begin, end], window of time indices to plot (e.g. t_index_window: [0,10])",
	t_index: "integer, index of time at which to plot (e.g. t_index: 20)",
	t: "float, value of time at which to plot (e.g. t: 2.45)",
	ky_index: "integer, index of ky at which to plot (e.g. ky_index: 20)",
	ky: "float, value of ky at which to plot (e.g. ky: 0.1)",
	kx_index: "integer, index of kx at which to plot (e.g. kx_index: 20)",
	kx: "float, value of kx at which to plot (e.g. kx: 0.1)",
	with: "Gnuplot Option (may not apply when using other packages), e.g. with: 'lp' or with 'pm3d palette'",
	rgbformulae: "Gnuplot Option (may not apply when using other packages), sets colour mapping. See gnuplot help set rgbformulae",
	limit: "Limit the range of quantity begin plotted - any values of the quantity outside the limits will be set to the limit: eg. limit: [0,80]",
	flip: 'Flip the y axis,  e.g. flip: true',
	rev: 'Reverse the x axis, e.g. rev: true',
	z: 'Plot quantities vs z = theta/shat rather than theta. See Beer, Cowley Hammet 1996, eg. z: true',
	norm: 'Normalise the graph so that its maximum is 1, e.g. norm: true',
	mag: 'Plot the magnitude, e.g. mag: true',
	species_index: "Which GS2 species to plot the graph for (1-based).",
  strongest_non_zonal_mode: "Plot the graph requested for the mode with the highest value of phi^2. Overrides ky, kx, ky_index, kx_index. Can be set true or false; e.g. strongest_non_zonal_mode: true",
	no_zonal: "Don't plot the ky=0 part (boolean, e.g. no_zonal: true)",
	no_kpar0: "Don't plot the kpar=0 part (boolean, e.g. no_kpar0: true)",
	log: "Plot the log of a given quantity (exact meaning varies). boolean",
	Rmaj: "The major radius in metres. This has no effect on the shape of the graph: it merely multiplies every length",
 n0: " The toroidal mode number of the longest y mode. In effect it is the number of periodic copies of the flux tube that will fit in the torus. Periodicity requires that n0 q  is also an integer. If you specify :n0 where this is not the case, q will automatically be adjusted until it is",
 rho_star: " The ratio of the reference Lamour radius to the GS2 normalising length a. Cannot be specified at the same time as n0. If specified, both n0 and q will be adjusted to ensure periodicity",
 t_index: "The (1-based) time index",
 nakx: "The number of radial wave numbers to include in the plot. In effect, it is a low pass filter which reduces the resolution in the radial direction without changing the shape of the final surface. Minimum value is 4",
 naky: "The number of kys to include in the plot. In effect, it is a low pass filter which reduces the resolution in the y direction without changing the shape of the final surface. Minimum value is 4",
 gs2_coordinate_factor: "When set to 1, plot the graph in GS2 coordinates. When set to  0 plot the graph in real space. Can be set at any value between 0 and 1: the graph will smoothly distort between the two limits",
 xmax: "The (0-based) index of the maximum value of x to include in the plot",
 xmin: "The (0-based) index of the minimum value of x to include in the plot",
 ymax: "The (0-based) index of the maximum value of y to include in the plot",
 ymin: "The (0-based) index of the minimum value of y to include in the plot",
 thetamax: "The (0-based) index of the maximum value of theta to include in the plot",
 thetamin: "The (0-based) index of the minimum value of theta to include in the plot",
 ncopies: " The number of periodic copies of the flux tube to include",
 torphi_values: "An array of two values of the toroidal angle. The graph will be plotted in between those two values with poloidal cross sections at either end",
 magnify: " The magnification factor of the small section. It can take any value greater than or equal to 1",

}

Constants included from GSLTensors

GSLTensors::FIELD_VALUES, GSLTensors::IRRELEVANT_INDICES, GSLTensors::TIME_VARYING_INDICES, GSLTensors::TRIVIAL_INDICES

Instance Attribute Summary collapse

Class Method Summary collapse

Instance Method Summary collapse

Methods included from GSLMatrices

#es_heat_flux_over_ky_over_kx_gsl_matrix, #growth_rate_over_ky_over_kx_gsl_matrix, #phi0_over_x_over_y_gsl_matrix, #spectrum_over_ky_over_kpar_gsl_matrix, #spectrum_over_ky_over_kx_gsl_matrix, #transient_amplification_over_ky_over_kx_gsl_matrix

Methods included from GSLVectorComplexes

#phi_along_field_line_gsl_vector_complex

Methods included from GSLVectors

#apar2_over_time_gsl_vector, #dt_gsl_vector, #es_heat_by_kx_over_time_gsl_vector, #es_heat_by_ky_over_time_gsl_vector, #es_heat_flux_over_time_gsl_vector, #es_mom_flux_over_time_gsl_vector, #growth_rate_by_kx_over_time_gsl_vector, #growth_rate_by_kxy_over_time_gsl_vector, #growth_rate_by_ky_over_time_gsl_vector, #growth_rate_over_kx_gsl_vector, #growth_rate_over_ky_gsl_vector, #hflux_tot_over_time_gsl_vector, #kpar_gsl_vector, #linked_kx_elements_gsl_vector, #lpc_energy_gsl_vector, #lpc_pitch_angle_gsl_vector, #par_mom_flux_over_time_gsl_vector, #perp_mom_flux_over_time_gsl_vector, #phi0_by_kx_by_ky_over_time_gsl_vector, #phi2_by_kx_over_time_gsl_vector, #phi2_by_ky_over_time_gsl_vector, #phi2_by_mode_over_time_gsl_vector, #phi2tot_over_time_gsl_vector, #phi_along_field_line_gsl_vector, #phi_for_eab_movie_gsl_vector, #scan_parameter_value_gsl_vector, #spectrum_over_kpar_gsl_vector, #spectrum_over_kx_gsl_vector, #spectrum_over_kxy_gsl_vector, #spectrum_over_ky_gsl_vector, #theta_along_field_line_gsl_vector, #transient_amplification_over_kx_gsl_vector, #transient_es_heat_flux_amplification_over_kx_gsl_vector, #transient_es_heat_flux_amplification_over_kxy_gsl_vector, #transient_es_heat_flux_amplification_over_ky_gsl_vector, #vres_energy_gsl_vector, #vres_pitch_angle_gsl_vector, #x_gsl_vector, #y_gsl_vector, #zonal_spectrum_gsl_vector

Methods included from FixNormOption

#fix_heat_flux_norm, #fix_norm, #fix_norm_action

Methods included from GSLComplexTensors

#field_gsl_tensor_complex, #phi_gsl_tensor_complex

Methods included from GSLTensors

#apar_gsl_tensor, #bpar_gsl_tensor, #cartesian_coordinates_gsl_tensor, #constant_torphi_surface_gsl_tensor, #correct_3d_options, #cylindrical_coordinates_gsl_tensor, #field_gsl_tensor, #field_real_space_gsl_tensor, #field_real_space_gsl_tensor_2, #geometric_factors_gsl_tensor, #moment_gsl_tensor, #phi_real_space_gsl_tensor

Instance Attribute Details

#eigenfunctionsObject

Returns the value of attribute eigenfunctions.



383
384
385
# File 'lib/gs2crmod/gs2.rb', line 383

def eigenfunctions
  @eigenfunctions
end

#iphi00Object

Necessary for back. comp. due to an old bug



994
995
996
# File 'lib/gs2crmod/gs2.rb', line 994

def iphi00
  @iphi00
end

#ky_graphsObject

Returns the value of attribute ky_graphs.



383
384
385
# File 'lib/gs2crmod/gs2.rb', line 383

def ky_graphs
  @ky_graphs
end

#ky_listObject

Returns the value of attribute ky_list.



383
384
385
# File 'lib/gs2crmod/gs2.rb', line 383

def ky_list
  @ky_list
end

#saturation_timeObject

Necessary for back. comp. due to an old bug



994
995
996
# File 'lib/gs2crmod/gs2.rb', line 994

def saturation_time
  @saturation_time
end

#scan_index_windowObject

Returns the value of attribute scan_index_window.



384
385
386
# File 'lib/gs2crmod/gs2.rb', line 384

def scan_index_window
  @scan_index_window
end

#scan_parameter_valueObject

Returns the value of attribute scan_parameter_value.



384
385
386
# File 'lib/gs2crmod/gs2.rb', line 384

def scan_parameter_value
  @scan_parameter_value
end

#t_listObject

Returns the value of attribute t_list.



383
384
385
# File 'lib/gs2crmod/gs2.rb', line 383

def t_list
  @t_list
end

#theta_listObject

Returns the value of attribute theta_list.



383
384
385
# File 'lib/gs2crmod/gs2.rb', line 383

def theta_list
  @theta_list
end

Class Method Details

.add_variable_to_namelist(namelist, var, value) ⇒ Object



856
857
858
859
# File 'lib/gs2crmod/gs2.rb', line 856

def self.add_variable_to_namelist(namelist, var, value)
	var = :stir_ + var if namelist == :stir
	super(namelist, var, value)
end

.cacheObject



79
80
81
82
# File 'lib/gs2crmod/graphs.rb', line 79

def self.cache
	@cache ||= {}
	@cache
end

.check_and_updateObject



388
389
390
391
# File 'lib/gs2crmod/gs2.rb', line 388

def check_and_update
	old_check_and_update
	@readout_list = (@variables + @results - [:growth_rates_by_ky, :growth_rates, :real_frequencies, :real_frequencies_by_ky, :ky_list, :kx_list, :theta_list, :t_list])
end

.defaults_file_headerObject



884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
# File 'lib/gs2crmod/gs2.rb', line 884

def self.defaults_file_header
	<<EOF1
######################################################################
#   Automatically generated defaults file for GS2 CodeRunner module  #
#                                                                    #
# This defaults file specifies a set of defaults for GS2 which are   #
# used by CodeRunner to set up and run GS2 simulations.              #
#                                                                    #
# Created #{Time.now.to_s}                                           #
#                                                                    #
######################################################################

@defaults_file_description = ""
EOF1
end

.generate_graphs_rdoc_fileObject



84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# File 'lib/gs2crmod/graphs.rb', line 84

def self.generate_graphs_rdoc_file
	File.open('graphs_rdoc.rb', 'w') do |file|
	graphs = self.instance_methods.find_all{|m| m.to_s =~ /_graphkit$/}.sort_by{|m| m.to_s}
	run = new(nil)
	file.puts "class #{self.to_s}::GraphKits\n"
	graphs.each do |graph|
		help = run.send(graph, command: :help)
		options = run.send(graph, command: :options)
		file.puts "# #{help}"
		if options and options.size > 0
			file.puts "# Options:"
			options.each do |op|
				file.puts "#\n# #{op}: #{GRAPHKIT_OPTIONS_HELP[op]}"
			end
		end
		file.puts "def #{graph}\nend"
	end
	file.puts "end"
	end
end

.help_graphsObject



104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# File 'lib/gs2crmod/graphs.rb', line 104

def self.help_graphs
# 	@@runner ||= CodeRunner.fetch_runner(U: true, 
	graphs = self.instance_methods.find_all{|m| m.to_s =~ /_graphkit$/}.sort_by{|m| m.to_s}
	run = new(nil)
	puts "-------------------------------------------\n    Available Graphs For #{self.to_s}\n-------------------------------------------\n"
	graphs.each do |graph|
		help = run.send(graph, command: :help)
		options = run.send(graph, command: :options)
		puts "\n------------------------------------\n#{graph.to_s.sub(/_graphkit/, '')}\n------------------------------------\n\n#{help}"
		if options and options.size > 0
			puts "\n\tOptions:"
			options.each do |op|
				puts "\t\t#{op}: #{GRAPHKIT_OPTIONS_HELP[op]}"
			end
		end
		
	end
end

.list_code_commandsObject



852
853
854
# File 'lib/gs2crmod/gs2.rb', line 852

def self.list_code_commands
	puts (methods - superclass.methods).sort
end

.modify_job_script(runner, runs, script) ⇒ Object



658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
# File 'lib/gs2crmod/gs2.rb', line 658

def self.modify_job_script(runner, runs, script)
	if CODE_OPTIONS[:gs2] and CODE_OPTIONS[:gs2][:list]
		if (list_size = CODE_OPTIONS[:gs2][:list]).kind_of? Integer
			raise "The total number of runs must be a multiple of the list size!" unless runs.size % list_size == 0
			pieces = runs.pieces(runs.size/list_size)
		else
			pieces = [runs]
		end
		script = ""
		pieces.each do |runs|
			#ep 'there is a list'
			FileUtils.makedirs('job_lists')
			jid = "#{runs[0].id}-#{runs[-1].id}"
			list_file = "job_lists/gs2_list_#{jid}.list"
			File.open(list_file,'w') do |file|
				file.puts runs.size
				file.puts runs.map{|r| "#{r.relative_directory}/#{r.run_name}"}.join("\n")
			end
			raise "runs must all have the same nprocs" unless runs.map{|r| r.nprocs}.uniq.size == 1 
			runs.each do |r| 
				# Make sure the restart file name includes the relative directory for
				# list runs
				reldir = r.relative_directory 
				rdir = r.restart_dir
				#puts rdir[0...reldir.size] == reldir, rdir[0...reldir.size], reldir
				#raise ""
				if rdir
					r.restart_dir = reldir + '/' + rdir if not rdir[0...reldir.size] == reldir
				else
					r.restart_dir = reldir
				end
				Dir.chdir(r.directory){r.write_input_file}
			end
			np = runs[0].nprocs.split('x').map{|n| n.to_i}
			np[0] *= runs.size
			nprocs = np.map{|n| n.to_s}.join('x')
			@runner.nprocs = nprocs
			ls = ListSubmitter.new(@runner, nprocs, list_file, jid)
			script << ls.run_command 
		end
	end
	return script
end

.test_gs2(*args) ⇒ Object

See TestGs2



6
7
8
# File 'lib/gs2crmod/test_gs2.rb', line 6

def self.test_gs2(*args)
	TestGs2.test_gs2(*args)
end

Instance Method Details

#actual_number_of_processorsObject Also known as: anop



810
811
812
813
# File 'lib/gs2crmod/gs2.rb', line 810

def actual_number_of_processors
  raise "Please specify the processor layout using the -n or (n:) option" unless @nprocs
	@nprocs.split('x').map{|n| n.to_i}.inject(1){|ntot, n| ntot*n}
end

#agk?Boolean

Returns:

  • (Boolean)


58
59
60
# File 'lib/gs2crmod/gs2.rb', line 58

def agk?
	false
end

#approximate_grid_sizeObject Also known as: agridsze



817
818
819
820
821
822
823
824
# File 'lib/gs2crmod/gs2.rb', line 817

def approximate_grid_size
	case @grid_option
	when "box"
	(2*(@nx-1)/3+1).to_i * (@naky||(@ny-1)/3+1).to_i * @ntheta * (2 * @ngauss + @ntheta/2).to_i * @negrid * 2 * @nspec
	else
		@ntheta * (2 * @ngauss + @ntheta/2).to_i * @negrid * 2 * @nspec
	end
end

#auto_axiskits(name, options) ⇒ Object



11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# File 'lib/gs2crmod/graphs.rb', line 11

def auto_axiskits(name, options)
	hash = cache[:auto_axiskits] ||= {'t' => ['Time', ''],
                'phi2tot_over_time' => ['Phi^2 Total', ''],
                'apar2_over_time' => ['Apar^2 Total', ''],
                'growth_rate_by_ky_over_time' => ['Growth Rate by ky', ''],
                 'growth_rate_by_kx_over_time' => ['Growth Rate by ky', ''],  
								 'growth_rate_by_mode_over_time' => ["Growth Rate by mode", ''],
                'phi2_by_ky_over_time' => ['Phi^2 by ky', ''],
                 'phi2_by_kx_over_time' => ['Phi^2 by ky', ''],  
                'es_heat_by_ky_over_time' => ['Phi^2 by ky', ''],
                 'es_heat_by_kx_over_time' => ['Phi^2 by ky', ''],  
								 'phi2_by_mode_over_time' => ["Phi^2 by mode", ''],
						 		 'hflux_tot' => ['Total Heat Flux', ''],
                'ky' => ['ky', "1/rho_#{species_letter}"],
                'kx' => ['kx', "1/rho_#{species_letter}"],
	        'kpar' => ['kpar', "2 pi/qR"],
	        'growth_rate_over_kx' => ['Growth Rate', "v_th#{species_letter}/a", 1],
	        'growth_rate_over_ky' => ['Growth Rate', "v_th#{species_letter}/a", 1],
	        'transient_es_heat_flux_amplification_over_kx' => ['Transient Electrostatic Heat Amplification', "", 1],
	        'transient_es_heat_flux_amplification_over_ky' => ['Transient Electrostatic Heat Amplification', "", 1],
	        'transient_amplification_over_kx' => ['Transient Amplification', "", 1],
	        'transient_amplification_over_ky' => ['Transient Amplification', "", 1],
	        'spectrum_over_kx' => ["Spectrum at t = #{sprintf("%.3f" ,(options[:t] or list(:t)[options[:t_index]] or list(:t).values.max))}", '', 1],
	        'zonal_spectrum' => ["Zonal spectrum at t = #{sprintf("%.3f" ,(options[:t] or list(:t)[options[:t_index]] or list(:t).values.max))}", '', 1],
	        'spectrum_over_ky' => ["Spectrum at t = #{sprintf("%.3f" ,(options[:t] or list(:t)[options[:t_index]] or list(:t).values.max))}", '', 1],
	        'growth_rate_over_ky_over_kx' => ["Growth Rate", "v_th#{species_letter}/a", 2],
	       	'es_heat_flux_over_ky_over_kx' => ["Heat flux at t = #{sprintf("%.3f" ,(options[:t] or list(:t)[options[:t_index]] or list(:t).values.max))}", '', 2],
	       	'spectrum_over_kpar' => ["Spectrum at t = #{sprintf("%.3f" ,(options[:t] or list(:t)[options[:t_index]] or list(:t).values.max))}", '', 1],
	       	'spectrum_over_ky_over_kx' => ["Spectrum at t = #{sprintf("%.3f" ,(options[:t] or list(:t)[options[:t_index]] or list(:t).values.max))}", '', 2],
	       	'spectrum_over_ky_over_kpar' => ["Spectrum at t = #{sprintf("%.3f" ,(options[:t] or list(:t)[options[:t_index]] or list(:t).values.max))}", '', 2],
	        'phi0_over_x_over_y' => ["Phi at t = #{sprintf("%.3f" ,(options[:t] or list(:t)[options[:t_index]] or list(:t).values.max))}", '', 2],
	        'es_mom_flux_over_time' => ["#{species_type((options[:species_index] or 1)).capitalize} Momentum Flux", '', 1]

                  
                   }
	return hash[name]
end

#axiskit(name, options = {}) ⇒ Object

Raises:

  • (CRError)


49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# File 'lib/gs2crmod/graphs.rb', line 49

def axiskit(name, options={})
	logf :axiskit
	if info = auto_axiskits(name, options)
		if info[2] and info[2] == 2
			axis =  GraphKit::AxisKit.autocreate({data: gsl_matrix(name, options), title: info[0], units: info[1]})
		elsif !info[2] or info[2] == 1
			axis =  GraphKit::AxisKit.autocreate({data: gsl_vector(name, options), title: info[0], units: info[1]})
			log 'successfully created axis'
		end
		return axis
	end
	case name
	when 'phi_along_field_line'
		title = options[:imrc].to_s.capitalize + " Phi"
		units = ""
		return GraphKit::AxisKit.autocreate(data: gsl_vector(name, options), title: title, units: units)
	when 'theta_along_field_line'
		title =  options[:z] ? "z/l_B" : 'Theta' 
		units = options[:z] ? '' : 'radians'
		return GraphKit::AxisKit.autocreate(data: gsl_vector(name, options), title: title, units: units)
	when 'es_heat_flux'
		type = species_type(options[:species_index]).capitalize
		units = ''
		return GraphKit::AxisKit.autocreate(data: gsl_vector('es_heat_flux_over_time', options), title: "#{type} Heat Flux", units: units)
# 	when 'spectrum_by_ky'
# 		return AxisKit.autocreate(data: gsl_vector('spectrum_by_ky', options), title: "Phi^2 at t = #{list(:t)[options[:t_index]]}", units: '')
	end
	raise CRError.new("Unknown axis kit: #{name}")
end

#box_kx_index(physical_kx_index) ⇒ Object



1117
1118
1119
1120
# File 'lib/gs2crmod/gsl_data.rb', line 1117

def box_kx_index(physical_kx_index)

	return kx_indexed[physical_kx_index]
end

#calculate_growth_rate(vector, options = {}) ⇒ Object



372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
# File 'lib/gs2crmod/calculations.rb', line 372

def calculate_growth_rate(vector, options={})
	raise "This vector should be positive definite" if vector.min < 0.0
	offset = 0
	length = vector.length
	offset+=1 while vector[offset] == 0.0
	growth_rate = GSL::Fit::linear(gsl_vector(:t).subvector(offset, length-offset), 0.5*GSL::Sf::log(vector.subvector(offset, length - offset)))[1]
	divisor = 1
	while (growth_rate.to_s == "NaN")
			#This corrects the growth rate if phi has grown all the way to NaN during the simulation
		divisor *= 2
		length = (vector.size.to_f / divisor.to_f).floor
# 				p length
		return "NaN" if length <= offset + 1
		growth_rate = GSL::Fit::linear(gsl_vector(:t).subvector(offset, length-offset), 0.5*GSL::Sf::log(vector.subvector(offset, length-offset)))[1]
	end	
	growth_rate
end

#calculate_growth_rates_and_frequenciesObject Also known as: cgrf



252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
# File 'lib/gs2crmod/calculations.rb', line 252

def calculate_growth_rates_and_frequencies
        return if @grid_option == "single" and @aky == 0.0 # no meaningful results
	Dir.chdir(@directory) do
		logf(:calculate_growth_rates_and_frequencies)
		logd
		
# 		get_list_of(:ky, :kx)
		@growth_rates= FloatHash.new
		@real_frequencies = FloatHash.new
		gs2_out = FileUtils.tail(@run_name + ".out", list(:ky).size*list(:kx).size)
# 		a  = gs2_out.split("\n")
		final_timestep_list = gs2_out #a.slice((a.size-@ky_list.size*@kx_list.size-1)..a.size-1).join("\n")
 		log(final_timestep_list.slice(-2..-1))
# 		eputs final_timestep_list
		f = LongRegexen::FLOAT.verbatim
		logi(f)
		regex = Regexp.new( "^.*aky=\\s*(?<aky>#{f}).*omav=\\s*(?<re>#{f})\\s*(?<gr>#{f})")
		logi(regex)
		final_timestep_list.gsub(regex) do 
			data = $~
#  			eputs data.inspect; gets
			#raise CRFatal.new("Unknown value of ky read from output file: #{data[:aky].to_f}. Not in list:\n#{list(:ky).values.inspect}") 
		
			next unless (list(:ky).values).include? data[:aky].to_f
			#@growth_rates[data[:aky].to_f] = data[:gr].to_f
			aky = data[:aky].to_f
			next if aky==0.0
			@real_frequencies[data[:aky].to_f] = data[:re].to_f
		end
# 		pp @ky_list
		
		# With zero magnetic shear, calculate growth rates for both kx and ky
		if @shat and @shat.abs < 1.0e-5 and @nx and @nx > 1 
			to_calc = [:kx, :ky]
			@growth_rate_at_kx ||= FloatHash.new
		else
			to_calc = [:ky]
		end
		
		@growth_rate_at_ky ||= FloatHash.new
 		eputs
#		p @growth_rate_at_kx; exit
		to_calc.each do |kxy|
			growth_rates = send(:growth_rate_at_ + kxy)
		list(kxy).values.sort.each do |value|
			
			#p growth_rates.keys, value, growth_rates[value.to_f-0.0],
			#growth_rates.class, growth_rates.keys.include?(value); exit
	
			next if growth_rates.keys.include? value

			
			Terminal.erewind(1)
			#ep growth_rates.keys
			eputs sprintf("Calculating growth rate for #{kxy} = % 1.5e#{Terminal::CLEAR_LINE}", value) 
			

					# Mode has 0 growth rate at ky==0
			(growth_rates[value] = 0.0; next) if value == 0.0 and kxy == :ky 
			if @g_exb_start_timestep
				t_index_window = [1, [(g_exb_start_timestep-1)/@nwrite, list(:t).keys.max].min]
				#ep "t_index_window", t_index_window
			else
				t_index_window = nil
			end
			if list(kxy).size == 1
				phi2_vec = gsl_vector("phi2tot_over_time", t_index_window: t_index_window)
			else
				phi2_vec = gsl_vector("phi2_by_#{kxy}_over_time", kxy=>value, :t_index_window=> t_index_window)
			end
			(growth_rates[value] = 0.0; next) if phi2_vec.min <= 0.0
			growth_rates[value] = calculate_growth_rate(phi2_vec)
			(eputs "\n\n----------\nIn #@run_name:\n\nphi2_by_#{kxy}_over_time is all NaN; unable to calculate growth rate\n----------\n\n"; growth_rates[value] = -1; next) if growth_rates[value] == "NaN"
		end
		end
		
 		write_results
		
# 		ep "growth_rate_at_ky", @growth_rate_at_ky
		if ENV['GS2_CALCULATE_ALL']
		trap(0){eputs "Calculation of spectrum did not complete: run 'cgrf' (i.e. calculate_growth_rates_and_frequencies) for this run. E.g. from the command line \n $ coderunner rc 'cgrf' -j #{@id}"; exit}
		@growth_rate_at_ky_at_kx ||= FloatHash.new
		list(:ky).values.sort.each do |kyv|
			@growth_rate_at_ky_at_kx[kyv] ||= FloatHash.new
			#p @growth_rate_at_ky_at_kx[kyv]
			list(:kx).values.sort.each do |kxv|	
				next if @growth_rate_at_ky_at_kx[kyv].keys.include? kxv
				Terminal.erewind(1)
				eputs sprintf("Calculating growth rate for kx = % 1.5e and ky = % 1.5e#{Terminal::CLEAR_LINE}", kxv, kyv) 
				(@growth_rate_at_ky_at_kx[kyv][kxv] = 0.0; next) if kyv == 0.0 # Mode has 0 growth rate at ky==0
				phi2_vec = gsl_vector("phi2_by_mode_over_time", {:kx=>kxv, :ky=>kyv})
				(@growth_rate_at_ky_at_kx[kyv][kxv] = 0.0; next) if phi2_vec.min <= 0.0
				@growth_rate_at_ky_at_kx[kyv][kxv] = calculate_growth_rate(phi2_vec)
				(eputs "\n\n----------\nIn #@run_name:\n\nphi2_by_#{kxy}_over_time is all NaN; unable to calculate growth rates\n----------\n\n"; @growth_rate_at_ky_at_kx[kyv][kxv] = -1; next) if @growth_rate_at_ky_at_kx[kyv][kxv] == "NaN" 
			end
			write_results
		end
		trap(0){}
		end
		@growth_rates = @growth_rate_at_ky
		@max_growth_rate = @growth_rates.values.max
		@fastest_growing_mode = @growth_rates.key(@max_growth_rate)
		@freq_of_max_growth_rate = @real_frequencies[@fastest_growing_mode]
		ep @max_growth_rate, @growth_rates
		@decaying = (@max_growth_rate < 0) if @max_growth_rate
		@ky = @aky if @aky
		if @grid_option == "single"
# 			ep @aky, @growth_rates
			@gamma_r = @growth_rates[@aky.to_f]
			@gamma_i = @real_frequencies[@aky.to_f]
		end
# 		ep @gamma_r
		
		
# 		eputs @growth_rates; gets
	end
end

#calculate_resultsObject



232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# File 'lib/gs2crmod/gs2.rb', line 232

def calculate_results
	return if ENV['CODE_RUNNER_NO_ANALYSIS'] =~ /true/

	
	eputs "Analysing run"	
	
	if @nonlinear_mode == "off"
	
		calculate_growth_rates_and_frequencies
	elsif @nonlinear_mode == "on"
		calculate_saturation_time_index
		calculate_time_averaged_fluxes
		calculate_spectral_checks
		begin 
			calculate_vspace_checks
		rescue
		end
	end

	@growth_rates ||={}
	@real_frequencies ||={}
end

#calculate_saturation_time_index(show_graph = false) ⇒ Object Also known as: csti

I.e. the time at which the primary modes are saturated and the fluxes settle around a long term average.



105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# File 'lib/gs2crmod/calculations.rb', line 105

def calculate_saturation_time_index(show_graph = false)
	
	eprint "Checking for saturation..."

	#hflux = gsl_vector('hflux_tot_over_time', {})
	hflux = gsl_vector('phi2tot_over_time', {})
	
 	#eputs 'got hflux'
	#ep 'hflux', hflux
	
	#Check if it's decayed to 0
	if hflux[-1] < 1.0e-10
		for i in 1..hflux.size
# 			raise "negative heat flux: #{hflux[-i]} " if hflux[-i] < 0
			(break) unless hflux[- i] < 1.0e-10
		end
		if i > hflux.size * 1.0/10.0 #i.e if was 0 for more than a tenth of the time
			@saturated = true
			@saturation_time_index = hflux.size - i + 1
			eputs "saturation time = #{list(:t)[@saturation_time_index]}"
			GraphKit.quick_create([gsl_vector('t',{}), hflux]).gnuplot(log_axis: 'y') if show_graph
			return
		end
	end
		
	# Get initial estimate for saturation time
	for i in 0...hflux.size
		rem = hflux.subvector(i, hflux.size - i)
		break if (hflux[i] - rem.mean).abs < rem.sd / 2.0
		break if i > 3.0/4.0*hflux.size
	end
	
	@saturation_time_index = [i + 1, hflux.size - 2].min
	
# 	fit = GSL::Fit::linear(GSL::Vector.indgen(rem.size), rem)
# 	
# 	slope, covar11 = fit[1], fit[4]
# 	range = [slope + Math.sqrt(covar11), slope - Math.sqrt(covar11)]
# 	
# 	unless range.min < 0 and range.max > 0
# 		eputs "Warning: This run (#{id}) has probably not reached a saturated state: the estimated slope of the heat flux is in this range: #{range.inspect}"
# 		@saturated = false
# 	end
# 	
# 	ep fit
	
# 	eputs "Saturation time estimate', @saturation_time_index = i + 1
# 	t_vec[@saturation_time_index - 1]
	max_t_index = list(:t).keys.max
	max_t = list(:t).values.max
	min_t = list(:t).values.min
	#hflux = gsl_vector('hflux_tot_over_time', {:t_index_window => [@saturation_time_index, max_t_index]})
	hflux = gsl_vector('phi2tot_over_time', {:t_index_window => [@saturation_time_index, max_t_index]})
	t_vec = gsl_vector('t', {:t_index_window => [@saturation_time_index, max_t_index]})
# 	p t_vec[0]
	i = 0
	t_arr = []; conf_arr = []
	loop do
		eprint '.'
		
# 		GraphKit.autocreate(x: {data: t_vec}, y: {data: hflux}).gnuplot
		
		lomb = GSL::SpectralAnalysis::Lomb.alloc(t_vec.subvector(i, t_vec.size - i),  hflux.subvector(i, hflux.size - i))
		fs, periodogram = lomb.calculate_periodogram(1.0, 4.0, [0]) #(1.0) #0.1 * hflux.size / ( hflux.size - i))
# 		lomb.graphkit.gnuplot
		
# 		eputs 'Confidence that lowest frequency is not noise is: '
		# pnoise is the probability of the strength of the lowest frequency signal in the heat flux given a hypothesis of gaussian noise. If it is high there is a low likelihood that there is a signal at the lowest frequency: ie. within that window the heat flux has reached a stationary state
		pnoise = lomb.pnull(periodogram[0])
		t_arr.push t_vec[i]; conf_arr.push pnoise
		
		(@saturated = true; break) if pnoise > 0.9
		step = (hflux.size / 25.0).to_i
		step = 1 if step==0
		i += step
		#(@saturated = false; i ; break) if (i >= t_vec.size or t_vec[i] > (max_t - min_t) * 2.0 / 3.0 + min_t )
		(@saturated = false; break) if (i >= t_vec.size or t_vec[i] > (max_t - min_t) * 2.0 / 3.0 + min_t )
		@saturation_time_index += step	
#		ep '---i,t,size',i, t_vec[i], t_vec.size
	end
	(kit = GraphKit.autocreate({x: {data: t_vec}, y: {data: hflux / hflux.max}}, {x: {data: t_arr}, y: {data: conf_arr}}); kit.data[1].with = 'lp'; kit.gnuplot) if show_graph #(log_axis: 'y')
# 	puts 
	if @saturated
# 		p i
		eputs "saturation time = #{list(:t)[@saturation_time_index]}"
	else
		eputs "run not saturated"
	end
		
	return
	exit
	# Get regularly spaced t vector
	
# 	
# 	t_delta_vec = GSL::Vector.alloc(t_vec.size - 1)
# 	t_delta_vec.size.times.each{|i| t_delta_vec[i] = t_vec[i+1] - t_vec[i]}
# 	
# 	ep t_delta_vec.max, t_delta_vec.min
# 	
# 	even_t = GSL::Vector.linspace(t_vec.min, t_vec.max, ((t_vec.max - t_vec.min) / t_delta_vec.max).round )
# 	
# # 	even_t = []
# # 	tm = t = t_vec[t_delta_vec.max_index]
# 	
# # 	loop do
# # 		even_t.push t
# 		
# # 	
# 	ep even_t.size, t_vec.size
# 	
# 	min_delt = t_delta_vec.min
# 	p even_t.any?{|el| bool = (not t_vec.any?{|ele| (ele - el).abs < 1.0e-1 * min_delt}); ep el if bool; bool}
# 	
# 	ep t_vec.dup.delete_if{|el| not (el - 71.3).abs < 0.5}
# 	
# 	exit
	
	
	
	
	return
	
	# Calculate a series of time averaged segments
	pieces = hflux.pieces(20) # split into 20 pieces
	avgs = GSL::Vector.alloc(pieces.map{|vec| vec.sum/vec.size})
	# Calculate their variance
	mean = (avgs.sum/avgs.size)
	sig = Math.sqrt((avgs.square - mean**2).sum/avgs.size)
	# Discount any at the start which are more than one standard deviation away from the average - they are from the linear growth phase
	t_index = 1
	kept_avgs = avgs.dup
	for i in 0...pieces.size
		if (avgs[i] - mean).abs > sig
			kept_avgs.delete_at(i)
			t_index += pieces[i].size
		else
			break
		end
	end
	eputs "Warning: probably not saturated" if [kept_avgs, kept_avgs.reverse].include? kept_avgs.sort
	ep kept_avgs
	@saturation_time_index = t_index
# 	p t_index, list(:t)[t_index]
end

#calculate_spectral_checksObject Also known as: csc



730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
# File 'lib/gs2crmod/calculations.rb', line 730

def calculate_spectral_checks
	ky_spec = gsl_vector('spectrum_over_ky')
	kx_spec = gsl_vector('spectrum_over_kx')
	kpar_spec = gsl_vector('spectrum_over_kpar', ky_index: ky_spec.max_index + 1, kx_index: 1)
	
	@spectrum_check = []
	[kx_spec, ky_spec, kpar_spec].each do |spec|
		begin
			ends_max = [spec[0], spec[-1]].max + (10.0**(-9))
			p ends_max 		
			p spec.max
			check = (Math.log(spec.max/ends_max)/Math.log(10)).round
		rescue
			check= -10
		end
		@spectrum_check.push check
	end
end

#calculate_time_averaged_fluxesObject Also known as: ctaf



19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# File 'lib/gs2crmod/calculations.rb', line 19

def calculate_time_averaged_fluxes
	eputs 'Calculating time averaged fluxes'
	calculate_saturation_time_index unless @saturation_time_index
	return unless FileTest.exist?("#@run_name.out.nc")
	@hflux_tot_stav = saturated_time_average('hflux_tot_over_time', {})
	@hflux_tot_stav_error = saturated_time_average_error('hflux_tot_over_time', {})
	@phi2_tot_stav = saturated_time_average('phi2tot_over_time', {})
	#@par_mom_flux_stav = saturated_time_average('par_mom_flux_over_time', {}) rescue nil
	#@perp_mom_flux_stav = saturated_time_average('perp_mom_flux_over_time', {}) rescue nil
	@es_mom_flux_stav = {}
	@es_heat_flux_stav = {}
	@es_mom_flux_stav_error = {}
	@es_heat_flux_stav_error = {}

	@nspec.times do |i|
		species_index = i + 1
		@es_mom_flux_stav[species_index]  = saturated_time_average('es_mom_flux_over_time', {species_index: species_index})
		@es_heat_flux_stav[species_index]  = saturated_time_average('es_heat_flux_over_time', {species_index: species_index})
		@es_mom_flux_stav_error[species_index]  = saturated_time_average_error('es_mom_flux_over_time', {species_index: species_index})
		@es_heat_flux_stav_error[species_index]  = saturated_time_average_error('es_heat_flux_over_time', {species_index: species_index})
	end
# 	ep @es_mom_flux_stav, @es_heat_flux_stav
end

#calculate_transient_amplification(vector, options = {}) ⇒ Object



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
# File 'lib/gs2crmod/calculations.rb', line 648

def calculate_transient_amplification(vector, options={})
	turning_points = {}
	old = vector[0]
	i = 0
	#for i in i...vector.size
		#new = vector[i]
		#if new > old
			#turning_points[:first_min] = i-1
			#ep "First turning point[#{i}]\n"
			#break
		#end
		#old = new
	#end

	#for i in i...vector.size
		#new = vector[i]
		#if new < old
			#turning_points[:first_max] = i-1
			#ep "Second turning point[#{i}]\n"
			#break
		#end
	#end

	#unless turning_points[:first_max] # and turning_points[:first_min]
		#return NaN
	#end
	##t = gsl_vector('t')
	##for j in 0...vector.size
		##break if t[j] > 0.2
	##end	
	#ep "vector[0..5]: #{vector.subvector(0,5)}\n"
	#return Math.sqrt(vector[turning_points[:first_max]]/@phiinit)
	return vector.max/@phiinit
end

#calculate_transient_amplificationsObject Also known as: cta



396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
# File 'lib/gs2crmod/calculations.rb', line 396

def calculate_transient_amplifications
  return if @grid_option == "single" and @aky == 0.0 # no meaningful results
	Dir.chdir(@directory) do
		# With zero magnetic shear, calculate amplifications for both kx and ky
		if @shat and @shat.abs < 1.0e-5 and @nx > 1 
			to_calc = [:kx, :ky]
			@transient_amplification_at_kx ||= FloatHash.new
		else
			to_calc = [:ky]
		end
		
		@transient_amplification_at_ky ||= FloatHash.new
 		eputs
		to_calc.each do |kxy|
			transient_amplifications = send(:transient_amplification_at_ + kxy)
			list(kxy).values.sort.each do |value|
			
				#p transient_amplifications.keys, value, transient_amplifications[value.to_f-0.0],
				#transient_amplifications.class, transient_amplifications.keys.include?(value); exit
		
				next if transient_amplifications.keys.include? value

				
				Terminal.erewind(1)
				#ep transient_amplifications.keys
				eputs sprintf("Calculating transient amplification for #{kxy} = % 1.5e#{Terminal::CLEAR_LINE}", value) 
				

						# Mode has 0 growth rate at ky==0
				(transient_amplifications[value] = 0.0; next) if value == 0.0 and kxy == :ky 
				phi2_vec = gsl_vector("phi2_by_#{kxy}_over_time", {kxy=>value})
				#(transient_amplifications[value] = 0.0; next) if phi2_vec.min <= 0.0
				transient_amplifications[value] = calculate_transient_amplification(phi2_vec)
				(eputs "\n\n----------\nIn #@run_name:\n\nphi2_by_#{kxy}_over_time is all NaN; unable to calculate growth rate\n----------\n\n"; transient_amplifications[value] = -1; next) if transient_amplifications[value].to_s == "NaN"
			end
		end
		
 		write_results
		
# 		ep "transient_amplification_at_ky", @transient_amplification_at_ky
		if ENV['GS2_CALCULATE_ALL']
		trap(0){eputs "Calculation of spectrum did not complete: run 'cgrf' (i.e. calculate_transient_amplifications_and_frequencies) for this run. E.g. from the command line \n $ coderunner rc 'cgrf' -j #{@id}"; exit}
		@transient_amplification_at_ky_at_kx ||= FloatHash.new
		list(:ky).values.sort.each do |kyv|
			@transient_amplification_at_ky_at_kx[kyv] ||= FloatHash.new
			#p @transient_amplification_at_ky_at_kx[kyv]
			list(:kx).values.sort.each do |kxv|	
				next if @transient_amplification_at_ky_at_kx[kyv].keys.include? kxv
				Terminal.erewind(1)
				eputs sprintf("Calculating growth rate for kx = % 1.5e and ky = % 1.5e#{Terminal::CLEAR_LINE}", kxv, kyv) 
				(@transient_amplification_at_ky_at_kx[kyv][kxv] = 0.0; next) if kyv == 0.0 # Mode has 0 growth rate at ky==0
				phi2_vec = gsl_vector("phi2_by_mode_over_time", {:kx=>kxv, :ky=>kyv})
				#(@transient_amplification_at_ky_at_kx[kyv][kxv] = 0.0; next) if phi2_vec.min <= 0.0
				@transient_amplification_at_ky_at_kx[kyv][kxv] = calculate_transient_amplification(phi2_vec)
				(eputs "\n\n----------\nIn #@run_name:\n\nphi2_by_#{kxy}_over_time is all NaN; unable to calculate growth rates\n----------\n\n"; @transient_amplification_at_ky_at_kx[kyv][kxv] = -1; next) if @transient_amplification_at_ky_at_kx[kyv][kxv].to_s == "NaN" 
			end
			write_results
		end
		trap(0){}
		end
		@transient_amplifications = @transient_amplification_at_ky
		@max_transient_amplification = @transient_amplifications.values.max
		@most_amplified_mode = @transient_amplifications.key(@max_transient_amplification)
		#@freq_of_max_transient_amplification = @real_frequencies[@fastest_growing_mode]
		#ep @max_transient_amplification, @transient_amplifications
		#@decaying = (@max_transient_amplification < 0) if @max_transient_amplification
		@ky = @aky if @aky
		#if @grid_option == "single"
## 			ep @aky, @transient_amplifications
			#@gamma_r = @transient_amplifications[@aky.to_f]
			#@gamma_i = @real_frequencies[@aky.to_f]
		#end
# 		ep @gamma_r
		
		
# 		eputs @transient_amplifications; gets
	end
end

#calculate_transient_es_heat_flux_amplificationsObject Also known as: ctehfa



478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
# File 'lib/gs2crmod/calculations.rb', line 478

def calculate_transient_es_heat_flux_amplifications
  return if @grid_option == "single" and @aky == 0.0 # no meaningful results

	@transient_es_heat_flux_amplification_at_species_at_kx = []
	@transient_es_heat_flux_amplification_at_species_at_ky = []
  @transient_es_heat_flux_amplification_at_species_at_ky_at_kx = []
	for species_index in 1..nspec

	Dir.chdir(@directory) do
		# With zero magnetic shear, calculate amplifications for both kx and ky
		if @shat and @shat.abs < 1.0e-5 and @nx > 1 and !@ikx_init and false
			to_calc = [:kx, :ky]
			@transient_es_heat_flux_amplification_at_species_at_kx[species_index-1] ||= FloatHash.new
		else
			to_calc = [:ky]
		end
		
		@transient_es_heat_flux_amplification_at_species_at_ky[species_index-1] ||= FloatHash.new
 		eputs
		to_calc.each do |kxy|
			transient_es_heat_flux_amplifications = send(:transient_es_heat_flux_amplification_at_species_at_ + kxy)[species_index-1]
			list(kxy).values.sort.each do |value|
			
				#p transient_es_heat_flux_amplifications.keys, value, transient_es_heat_flux_amplifications[value.to_f-0.0],
				#transient_es_heat_flux_amplifications.class, transient_es_heat_flux_amplifications.keys.include?(value); exit
		
				next if transient_es_heat_flux_amplifications.keys.include? value

				
				Terminal.erewind(1)
				#ep transient_es_heat_flux_amplifications.keys
				eputs sprintf("Calculating transient amplification for #{kxy} = % 1.5e#{Terminal::CLEAR_LINE}", value) 
				

						# Mode has 0 growth rate at ky==0
				(transient_es_heat_flux_amplifications[value] = 0.0; next) if value == 0.0 and kxy == :ky 
				phi2_vec = gsl_vector("es_heat_by_#{kxy}_over_time", {kxy=>value, species_index: species_index})
				#(transient_es_heat_flux_amplifications[value] = 0.0; next) if phi2_vec.min <= 0.0
				transient_es_heat_flux_amplifications[value] = calculate_transient_amplification(phi2_vec)
				(eputs "\n\n----------\nIn #@run_name:\n\nphi2_by_#{kxy}_over_time is all NaN; unable to calculate growth rate\n----------\n\n"; transient_es_heat_flux_amplifications[value] = -1; next) if transient_es_heat_flux_amplifications[value].to_s == "NaN"
			end
		end
		
 		write_results
		
# 		ep "transient_es_heat_flux_amplification_at_species_at_ky", @transient_es_heat_flux_amplification_at_species_at_ky
		if ENV['GS2_CALCULATE_ALL']
		trap(0){eputs "Calculation of spectrum did not complete: run 'ctehfa' (i.e. calculate_transient_es_heat_flux_amplifications) for this run. E.g. from the command line \n $ coderunner rc 'ctehfa' -j #{@id}"; exit}
		@transient_es_heat_flux_amplification_at_species_at_ky_at_kx[species_index-1] ||= FloatHash.new
		list(:ky).values.sort.each do |kyv|
			@transient_es_heat_flux_amplification_at_species_at_ky_at_kx[species_index-1][kyv] ||= FloatHash.new
			#p @transient_es_heat_flux_amplification_at_species_at_ky_at_kx[kyv]
			list(:kx).values.sort.each do |kxv|	
				next if @transient_es_heat_flux_amplification_at_species_at_ky_at_kx[species_index-1][kyv].keys.include? kxv
				Terminal.erewind(1)
				eputs sprintf("Calculating growth rate for kx = % 1.5e and ky = % 1.5e#{Terminal::CLEAR_LINE}", kxv, kyv) 
				(@transient_es_heat_flux_amplification_at_species_at_ky_at_kx[species_index-1][kyv][kxv] = 0.0; next) if kyv == 0.0 # Mode has 0 growth rate at ky==0
				phi2_vec = gsl_vector("phi2_by_mode_over_time", {:kx=>kxv, :ky=>kyv})
				#(@transient_es_heat_flux_amplification_at_species_at_ky_at_kx[kyv][kxv] = 0.0; next) if phi2_vec.min <= 0.0
				@transient_es_heat_flux_amplification_at_species_at_ky_at_kx[species_index-1][kyv][kxv] = calculate_transient_es_heat_flux_amplification(phi2_vec)
				(eputs "\n\n----------\nIn #@run_name:\n\nphi2_by_#{kxy}_over_time is all NaN; unable to calculate growth rates\n----------\n\n"; @transient_es_heat_flux_amplification_at_species_at_ky_at_kx[species_index-1][kyv][kxv] = -1; next) if @transient_es_heat_flux_amplification_at_species_at_ky_at_kx[species_index-1][kyv][kxv].to_s == "NaN" 
			end
			write_results
		end
		trap(0){}
		end
		#@max_transient_es_heat_flux_amplification = @transient_es_heat_flux_amplifications.values.max
		#@most_amplified_mode = @transient_es_heat_flux_amplifications.key(@max_transient_es_heat_flux_amplification)
		#@ky = @aky if @aky
	end
	end # for species_index in 1..nspec
end

#calculate_vspace_checksObject Also known as: cvc



749
750
751
752
753
754
# File 'lib/gs2crmod/calculations.rb', line 749

def calculate_vspace_checks
	@vspace_check = ['lpc_pitch_angle', 'vres_pitch_angle', 'lpc_energy',  'vres_energy'].map do |name|
		saturated_time_average(name, {}) 
	end
		
end

#check_convergedObject

Raises:

  • (CRFatal)


5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# File 'lib/gs2crmod/check_convergence.rb', line 5

def check_converged
	raise CRFatal.new("It is strongly recommended that you do not use the use_large_cache option (-U) while checking convergence. Doing so will lead to unpredictable results.") if @runner.use_large_cache
	Dir.chdir(@directory) do
		logf(:check_converged)
		return if @checked_converged and not @runner.recalc_all  

		log('@runner.class:', @runner.class)
		unless @runner.current_request == :check_converged
			@runner.requests.push :check_converged
			log 'check_converged requested recall'
			logi '@runner.requests', @runner.requests
			logi('@runner.object_id', @runner.object_id)
			return
		end	
		
		return unless @status == :Complete
		eputs @run_name
		eputs @checked_converged = true
		log("finding similar resolutions")
		@runner.generate_combined_ids(:real)
		case @grid_option
		when "box"	
			@similar_resolutions = @runner.similar_runs([:nx, :ny, :ntheta, :negrid, :naky, :ngauss, :nperiod, :delt, :jtwist], self)
		when "single"
			@similar_resolutions = @runner.similar_runs([:ntheta, :negrid, :naky, :ngauss, :nperiod], self)
		else
			raise CRFatal.new("Unknown grid option - can't get similar runs")
		end
			
		logi(@similar_resolutions)
		unless @similar_resolutions[1]
			eputs @run_name
			@converged = Feedback.get_boolean("This is is the biggest job with these params. Do you want to say it is converged?")
			return 
		end
		@similar_resolutions.sort! do |id1, id2|
			run1 = @runner.run_list[id1]
			run2 = @runner.run_list[id2]
			if @grid_option == "box" and @nonlinear_mode == "off" 
				(run1.jtwist*run1.nx*run1.negrid*run1.ngauss*run1.ntheta*run1.delt <=> run2.jtwist*run2.nx*run2.negrid*run2.ngauss*run2.ntheta*run2.delt)
			elsif @grid_option == "single" and @nonlinear_mode == "off"
				log("using nperiod: #{run1.nperiod}; #{run2.nperiod}")
				run1.negrid*run1.ngauss*run1.ntheta*run1.nperiod <=> run2.negrid*run2.ngauss*run2.ntheta*run2.nperiod

			elsif @naky	
				
				run1.nx*run1.negrid*run1.ngauss*run1.ntheta*run1.naky <=> run2.nx*run2.negrid*run2.ngauss*run2.ntheta*run2.naky
				
			else
				run1.nx*run1.negrid*run1.ngauss*run1.ntheta*run1.ny <=> run2.nx*run2.negrid*run2.ngauss*run2.ntheta*run2.ny

			end

		end

	# 	eputs @similar_resolutions
				
		log("finding my place")
		my_place = @similar_resolutions.index(@id);
	# 	eputs my_place; gets
		if my_place > 0 
			last_job = @runner.run_list[@similar_resolutions[my_place - 1]]
			unless last_job.status == :Complete
				@checked_converged = false
				return
			end
		else
			@converged = false
			return
		end

			
		log("Checking overall convergence")
		#graph = graphkit('phi2tot_vs_time_all_kys') + #last_job.graphkit('phi2tot_vs_time_all_kys')
		#graph.gnuplot
		eputs "\n \n Warning: there are no bigger jobs" unless @similar_resolutions[my_place + 1]  
		#@converged = Feedback.get_boolean("Is the plot converged?")
		#graph.close

		#(@checked_converged = true; return) unless @converged

		log("Checking convergence by ky")
		orn, last_job.runner = last_job.runner, nil
		log('last_job', last_job.pretty_inspect)
		last_job.runner = orn
# 		last_job.get_ky_graphs; last_job.get_eigenfunctions
	# 	logi(last_job.ky_graphs)
		catch(:quit_converge_check) do 
			options = {}
			list(:ky).each do |index, ky|
				options[:ky] = ky
				next if index == 1 and @grid_option == "box"
				graph = (graphkit('phi2_by_ky_vs_time', options)+last_job.graphkit('phi2_by_ky_vs_time', options))
				graph.gnuplot
				answer = Feedback.get_choice("Is the graph converged?", ["Yes", "No", "The whole run is converged, stop pestering me!"])
				graph.close
				case answer
				when /No/
					@converged = false
					throw(:quit_converge_check)
				when /stop/
					@converged = true
					throw(:quit_converge_check)
				when /Yes/
					@converged = true
				end
				cgraph = lgraph = 'efnnormmag'
				graph = (graphkit('efnnormmag', options)+last_job.graphkit('efnnormmag', options))
				
# 				graph.gnuplot

				loop do
					graph.gnuplot
					answer = Feedback.get_choice('Is the graph converged?', ['Yes', 'No', 'The whole run is converged, stop pestering me!', 'Show me the magnitude of the eigenfunctions', 'Show me the real part of the eigenfunctions again', 'Normalise the eigenfunctions', 'Denormalise the eigenfunctions', 'Reverse the axis of the current run', 'Flip the current run', 'Toggle xrange'])
					graph.close
					case answer
					when /^Yes$/		
						@converged = true
						break
					when /^No$/
						@converged = false
						throw(:quit_converge_check)
					when /stop/
						@converged = true
						throw(:quit_converge_check)
					when /magnitude/
						log 'checking convergence using magnitude'
						lgraph += 'mag'; cgraph += 'mag'
					when /Normalise/
						log 'normalising'
						lgraph += 'norm'; cgraph += 'norm'
					when /Denormalise/
						log 'denormalising'
						lgraph.gsub!(/norm/, ''); cgraph.gsub!(/norm/, '')
					when /real/
						lgraph.gsub!(/mag/, ''); cgraph.gsub!(/mag/, '')
					when /Reverse/
						cgraph = cgraph =~ /rev/ ? cgraph.sub!(/rev/, '') : cgraph + 'rev'
# 						graph = (@eigenfunctions[ky]+last_job.eigenfunctions[ky])
					when /Flip/
						cgraph = cgraph =~ /flip/ ? cgraph.sub!(/flip/, '') : cgraph + 'flip'
# 						graph = (@eigenfunctions[ky]+last_job.eigenfunctions[ky])
					when /xrange/
						if options[:range]
							options[:range] = nil
						else
							options[:range] = 0
						end
					else
						raise CRFatal.new("couldn't match choice #{answer}")
					end
					graph = graphkit(cgraph, options) + last_job.graphkit(lgraph, options)
					log graph.title
				end
				
				
			end
		end
		@checked_converged =true
		
		if last_job.checked_converged
			last_job.ky_graphs = nil
			last_job.eigenfunctions = nil
# 			last_job.t_list = nil
# 			last_job.kx_list = nil
		end
		
# 		finish_processing
	end
	ep self
end

#code_run_environmentObject



80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# File 'lib/gs2crmod/gs2.rb', line 80

def code_run_environment
	case CodeRunner::SYS
	when /iridis/
		<<EOF
module load openmpi
EOF
	when /helios/
		<<EOF
module load intel
module load bullxmpi
module load netcdf
EOF
	else
		""
	end
end

#corrected_mom_flux_stavObject

Not needed for GS2 built after 16/06/2010



392
393
394
# File 'lib/gs2crmod/calculations.rb', line 392

def corrected_mom_flux_stav
	par_mom_flux_stav - perp_mom_flux_stav
end

#ctanObject



683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
# File 'lib/gs2crmod/calculations.rb', line 683

def ctan
	list(:ky).each do |(ky_index, ky)|
		eputs "ky: #{ky}"
		phi_vec = gsl_vector("phi2_by_ky_over_time", ky_index: ky_index)
		t_element	= 0
		old = phi_vec[0]

	  loop do 
			t_element+=1
			#print t_element, ',', phi_vec.size
			new = phi_vec[t_element]
			break if new > old or t_element == phi_vec.size - 1
			old = new
		end
		
		if t_element == phi_vec.size - 1
			@transient_amplification_at_ky[ky] = -1
			eputs "No Min"
			next
		end
		first_min = t_element

		eputs "ky: #{ky}, first_min: #{first_min}"
	  loop do 
			t_element+=1
			#print t_element, ',', phi_vec.size
			new = phi_vec[t_element]
			break if new < old or t_element == phi_vec.size - 1
		end
		if t_element == phi_vec.size - 1
			@transient_amplification_at_ky[ky] = -1
			next
		end
		@transient_amplification_at_ky[ky] = phi_vec.subvector(t_element, phi_vec.size - t_element).max
	end
end

#cumulative_gridpointsObject



223
224
225
226
227
# File 'lib/gs2crmod/ingen.rb', line 223

def cumulative_gridpoints
	c = 1
	error("Please specify layout") unless @layout
  @layout.split(//).reverse.inject({}){|hash, let| c*=gridpoints[let]; hash[let] = c; hash}
end

#data_stringObject



394
395
396
397
398
399
400
401
402
# File 'lib/gs2crmod/gs2.rb', line 394

def data_string
	logf(:data_string)
	return "" unless @converged unless @grid_option == 'single'
	logi(@ky, @growth_rates, @real_frequencies)
# 	log(:@@readout_list, @@readout_list)
	return rcp.readout_list.inject(""){|str,(var,type_co)| str+"#{(send(var) || "0")}\t"} + "\n" 

# 	@ky ? (@@variables + @@results - ).inject(""){|str,(var,type_co)| str+"#{(send(var) || "0")}\t"} + sprintf("%e\t%e\t%e\n", @ky, @growth_rates[@ky], @real_frequencies[@ky]) : (@@variables + @@results).inject(""){|str,(var,type_co)| str+"#{(send(var) || "0")}\t"} + sprintf("%e\t%e\t%e\n",  @fastest_growing_mode, @max_growth_rate, @freq_of_max_growth_rate)
end

#delete_restart_files(options = {}) ⇒ Object

Delete all the restart files (irreversible!)



557
558
559
560
# File 'lib/gs2crmod/gs2.rb', line 557

def delete_restart_files(options={})
	return unless Feedback.get_boolean("Deleting restart files. This action cannot be reversed. Do you wish to continue?") unless options[:no_confirm]
	list_of_restart_files.each{|file| FileUtils.rm file}
end

#diagnostics_namelistObject



235
236
237
# File 'lib/gs2crmod/ingen.rb', line 235

def diagnostics_namelist
	:gs2_diagnostics_knobs
end

#error(message) ⇒ Object

Raises:



14
15
16
# File 'lib/gs2crmod/ingen.rb', line 14

def error(message)
	raise InputFileError.new("Error: " + message)
end

#estimated_nodesObject Also known as: estnod

Gives a guess as to the maximum number of nodes which can be can be utilized on the current system



838
839
840
# File 'lib/gs2crmod/gs2.rb', line 838

def estimated_nodes
	parallelizable_meshpoints / max_ppn
end

#eulerian_kx_index(options) ⇒ Object

This function is used in the presence of perpendicular flow shear. It returns the (Eulerian) GS2 kx_index as a function of the Lagrangian kx, which is the kx_index of the mode in a shearing coordinate system, I.e. if you give it an Lagrangian kx (which is the same as the Eulerian kx at t=0) it will tell you where it has now got to. It may have left the box, in which case this function will return an error.

A given Lagrangian kx moves through the GS2 box, and thus for such a kx the response matrix varies in time. This is done because the effect of flow shear can be reduced by a shearing coordinate transformation to become merely a time varying kx.

At each timestep, phi(ikx_indexed(it)) is set equal to phi(ikx_indexed(it - jump(iky)) kx_indexed is defined in the following way.

do it=itmin(1), ntheta0

ikx_indexed (it+1-itmin(1)) = it end do

do it=1,itmin(1)-1 ikx_indexed (ntheta0 - itmin(1) + 1 + it)= it end do

In other words, what this means is that akx(ikx_indexed(0)) is the minimum kx, and that akx(ikx_indexed(ntheta0)) gives the maximum kx, kx_indexed moves the kxs out of box order.

So. remembering that jump is negative, phi(kx) is set equal phi(kx - jump * dkx) so the Lagrangian mode has moved to a lower kx. So get the Eulerian index, one starts with the Lagrangian index, and adds jump (which is negative!). This, however, must be done with indexes that are in the physical (not box) order. So this function first moves the indexes out of box order, then adds jump, then moves them back into box order so that the index returned will give the correct kx from the GS2 array.

Raises:

  • (ArgumentError)


1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
# File 'lib/gs2crmod/gsl_data.rb', line 1090

def eulerian_kx_index(options)
	#eputs "Start eulerian_kx_index"
	lagrangian_kx_index = options[:kx_index]
	phys = physical_kx_index(lagrangian_kx_index)
	#ep 'jump', jump(options)
	index = phys + jump(options)
	raise ArgumentError.new("Lagrangian kx out of range") if index <= 0
	box= box_kx_index(index)
	#eputs "End eulerian_kx_index"
	return box
end

#generate_input_fileObject



740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
# File 'lib/gs2crmod/gs2.rb', line 740

def generate_input_file
	raise CRFatal("No Input Module File Given or Module Corrupted") unless methods.include? (:input_file_text)
	run_namelist_backwards_compatibility
	if @restart_id
		@runner.run_list[@restart_id].restart(self)
		eputs 'Copying Restart files', ''
		FileUtils.makedirs('nc')
		#old_dir = File.dirname(@restart_file)
		@restart_file = "#@restart_run_name.nc" #+ File.basename(@restart_file) #.sub(/\.nc/, '')
		@restart_dir = "nc"
		#files = Dir.entries(old_dir).grep(/\.nc(?:\.\d|_ene)/)
		#files = Dir.entries(old_dir).grep(/^\.\d+$/) if files.size == 0
		files = @runner.run_list[@restart_id].list_of_restart_files.map do |file|
			@runner.run_list[@restart_id].directory + "/" + file
		end
		files.each_with_index do |file , index|
			eputs "\033[2A" # Terminal jargon - go back one line
			eputs "#{index+1} out of #{files.size}"
			num = file.scan(/(?:\.\d+|_ene)$/)[0]
			#FileUtils.cp("#{old_dir}/#{file}", "nc/#@restart_file#{num}")
			FileUtils.cp(file, "nc/#@restart_file#{num}")
		end
	elsif @save_for_restart.fortran_true?
		@restart_dir = "nc"
		#if CODE_OPTIONS[:gs2] and CODE_OPTIONS[:gs2][:list]
			#FileUtils.makedirs "#{@runner.root_folder}/#@restart_dir"
		#else
			FileUtils.makedirs @restart_dir
		#end
		@restart_file = "#@run_name.nc"

	end
	
	# Let Gs2 know how much wall clock time is available. avail_cpu_time is a GS2 input parameter.
	@avail_cpu_time = @wall_mins * 60 if @wall_mins

	#  Automatically set the number of  nodes to be the maximum possible without parallelising over x, if the user has left the number of nodes unspecified.
	
	set_nprocs


	######### Check for errors and inconsistencies 
	ingen
	#########

	write_input_file
end

#generate_phantom_runsObject



287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# File 'lib/gs2crmod/gs2.rb', line 287

def generate_phantom_runs
	@phantom_runs = []
	logf(:generate_phantom_runs)
	return if @grid_option == "single" and @scan_type == "none"
	begin 
		list(:ky) # This will fail unless the run has output the netcdf file
	rescue
		return
	end
	return unless @status == :Complete #and @converged
	log(@run_name)
	if @grid_option == "box" and @nonlinear_mode == "off"
		@ky = nil
# 		raise CRFatal.new("no @ky_list") unless @ky_list
# 		log list(:ky)
		list(:ky).each do |id, ky|
			phantom_run = create_phantom #self.dup
			phantom_run.ky = ky
			phantom_run.gamma_r = @growth_rates[ky]
			phantom_run.gamma_i = @real_frequencies[ky]
			log @runner.phantom_ids
# 			log('@runner.class', @runner.class)
# 			@runner.add_phantom_run(phantom_run)
		end
	elsif @scan_type and @scan_type != "none" 
		t = gsl_vector('t')
		scan_vals = gsl_vector('scan_parameter_value')
		current = scan_vals[0]
		start = 0
		for i in 0...t.size
			if scan_vals[i] != current
				phantom = create_phantom
				phantom.scan_index_window = [start+1, i] #remember indexes are elements + 1
				#ep 'scan_index_window', phantom.scan_index_window
				phantom.scan_parameter_value = current
				phantom.growth_rate_at_ky = nil
				phantom.growth_rate_at_kx = nil
				phantom.growth_rate_at_ky_at_kx = nil
				phantom.calculate_results
				current = scan_vals[i]
				start = i
			end
		end
	end
end

#get_completed_timestepsObject



354
355
356
357
358
359
360
361
362
# File 'lib/gs2crmod/gs2.rb', line 354

def get_completed_timesteps	
 	#raise CRFatal.new("Couldn't find outfile #{@run_name}.out") unless FileTest.exist?(@run_name + ".out")
	#p 'try to get completed_timesteps', Dir.pwd, 'nwrite', @nwrite, 'delt', @delt
	@completed_timesteps = (list(:t).size - 1) * (@nwrite || 1)
	#p 'tried to get completed_timesteps'
	#rescue
	#`grep time= #@run_name.out`.split.size
# 	File.read("#@run_name.out").scan(/^\s+time\s*=\s+/).size * @nwrite
end

#get_list_of(*args) ⇒ Object Also known as: list



435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
# File 'lib/gs2crmod/gs2.rb', line 435

def get_list_of(*args)
	#args can be any list of e.g. :ky, :kx, :theta, :t ... 
	logf(:get_list_of)
	refresh = args[-1] == true ? true : false
	args.pop if args[-1] == true
	logd
	Dir.chdir(@directory) do
		args.each do |var|
# 			eputs "Loading #{var}"
			list_name = var + :_list
			log list_name
			
# 			self.class.send(:attr_accessor, list_name)
 			next if (cache[list_name] and [:Failed, :Complete].include? status and not refresh)
			
			cache[list_name] = {}
			netcdf_file.var(var.to_s).get.to_a.each_with_index do |value, element|
# 				print '.'
				cache[list_name][element+1]=value
			end
#			eputs send(var+:_list)
		end
	end
	logfc :get_list_of
	return cache[args[0] + :_list] if args.size == 1
end

#get_run_timeObject

Try to read the runtime in minutes from the GS2 standard out.



258
259
260
261
262
263
264
265
266
267
268
269
# File 'lib/gs2crmod/gs2.rb', line 258

def get_run_time
	logf(:get_run_time)
	output = @output_file || try_to_get_output_file
	return nil unless output
	begin
		Regexp.new("total from timer is:\\s*#{LongRegexen::NUMBER}", Regexp::IGNORECASE).match FileUtils.tail(output, 300) 
		logi $~
		@run_time = $~[:number].to_f
	rescue
		@run_time = nil
	end
end

#get_statusObject



608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
# File 'lib/gs2crmod/gs2.rb', line 608

def get_status
# 	eputs 'Checking Status'
	logf(:get_status)

	Dir.chdir(@directory) do
		if @running
			if FileTest.exist?(@run_name + ".out") and FileUtils.tail(@run_name + ".out", 5).split(/\n/).size > 4 and FileUtils.tail(@run_name + ".out", 200) =~ /t\=/
				@status = :Incomplete
			else
				@status = :NotStarted
			end
			
		else	
			if FileTest.exist?(@run_name + ".out") and FileUtils.tail(@run_name + ".out", 5).split(/\n/).size > 4
				#eputs "HERE", @scan_type
				if  @nonlinear_mode == "off" and FileUtils.tail(@run_name + ".out",200) =~ /omega converged/
					eputs 'Omega converged...'
					@status = :Complete
			  elsif @scan_type and @scan_type != "none" and FileUtils.tail(@run_name + ".par_scan",200) =~ /scan\s+is\s+complete/i
					eputs 'Scan complete...'
					@status = :Complete
				elsif @nonlinear_mode == "on" or !@omegatol or @omegatol < 0.0 or (@exit_when_converged and @exit_when_converged.fortran_false?)
				   	eputs 'No omegatol'
					if FileTest.exist?(@run_name + ".out.nc")
						get_completed_timesteps
					else		
						eputs "Warning: no netcdf file #@run_name.out.nc"
						@status = :Failed
						return
					end
						#ep "completed_timesteps", @completed_timesteps
					eputs "#{percent_complete}% of Timesteps Complete"
					if percent_complete == 100.0
						@status = :Complete
					elsif percent_complete > 5 and FileUtils.tail(output_file, 200) =~ /total from timer is/
						@status = :Complete
					else 
						@status = :Failed
					end		
				else
					@status = :Failed
				end
			else 
				@status=:Failed
			end
		end
	end
end

#get_timeObject

Raises:

  • (CRFatal)


335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# File 'lib/gs2crmod/gs2.rb', line 335

def get_time
	begin 
		lt = list(:t)
		return lt.values.max if lt.size>0
	rescue
	end
	time = nil
# 	eputs 	File.readlines(@run_name +".out").slice(-4..-1).reverse.join( "\n"); gets
	raise CRFatal.new("Couldn't find outfile #{@run_name}.out") unless FileTest.exist?(@run_name + ".out") 
	tail = FileUtils.tail("#@run_name.out", 4)
	#File.readlines(@run_name +".out").slice(-4..-1).reverse.join( "\n")
	tail.sub(LongRegexen::FLOAT) do
# 		eputs $~.inspect
		time =   $~[:float].to_f
	end  #if FileTest.exist? (@run_name +".out")
	#raise CRFatal.new("couldn't get the time from #{tail}") unless time
	@time = time
end

#graphkit(name, options = {}) ⇒ Object



173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# File 'lib/gs2crmod/graphs.rb', line 173

def graphkit(name, options={})
	logf :graphkit
	# If an array of t, kx or ky values is provided, plot one graph for each value and then sum the graphs together
	[:t, :kx, :ky].each do |var|
		#ep 'index', var
		if options[var].class == Symbol and options[var] == :all
			options[var] = list(var).values
		elsif options[var+:_index].class == Symbol and options[var+:_index] == :all
			#ep 'Symbol'
			options[var+:_index] = list(var).keys
		end
		if options[var].class == Array
			return options[var].map{|value| graphkit(name, options.dup.absorb({var =>  value}))}.sum
		elsif options[var+:_index].class == Array
			#ep 'Array'
			return options[var+:_index].map{|value| graphkit(name, options.dup.absorb({var+:_index =>  value}))}.sum
		end
		if options[var].class == Symbol and options[var] == :max
			options[var] = list(var).values.max
		elsif options[var+:_index].class == Symbol and options[var+:_index] == :max
			ep 'Symbol'
			options[var+:_index] = list(var).keys.max
		end
	end
	options[:t_index] ||= options[:frame_index]  if options[:frame_index]

	


	# If a method from the new GraphKits module can generate this graphkit use it 
	#ep name + '_graphkit'
 	#ep self.class.instance_methods.find{|meth| (name + '_graphkit').to_sym == meth}

	if method = self.class.instance_methods.find{|meth| (name + '_graphkit').to_sym == meth}
		options[:graphkit_name] = name
		return send(method, options)
	end

	raise "Graph #{name} not found"
	
end

#gridpointsObject

A hash which gives the actual numbers of gridpoints indexed by their corresponding letters in the layout string.



213
214
215
216
217
218
219
220
221
# File 'lib/gs2crmod/ingen.rb', line 213

def gridpoints
 	gridpoints = {'l' => @ngauss, 'e' => @negrid, 's' => @nspec}
	if @grid_option == "single"
		gridpoints.absorb({'x'=>1, 'y'=>1})
	else
		gridpoints.absorb({'x' => (2.0 * (@nx - 1.0) / 3.0  + 1.0).floor,  'y' => (@naky or ((@ny - 1.0) / 3.0  + 1.0).floor)})
	end
	return gridpoints
end

#gsl_complex(name, options = {}) ⇒ Object



1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
# File 'lib/gs2crmod/gsl_data.rb', line 1138

def gsl_complex(name, options={})
	options = eval(options) if options.class == String
# 	p @directory
	Dir.chdir(@directory) do
# 		eputs Dir.pwd
		case name
		when /correcting_phase/
# 			options.convert_to_index(self, :ky)
# 			theta0 = (options[:theta0] or 0)
# # 			p 'options[:ky_index]', options[:ky_index]
# 			phase_array = NumRu::NetCDF.open("#@directory/#@run_name.out.nc").var('phase').get({"start" => [0, options[:ky_index] - 1, theta0], 'end' => [1, options[:ky_index] - 1, theta0] }).to_a.flatten
# 			p 'phase_array', phase_array
# 			thetaelement0 = (list(:theta).key(0.0) - 1).to_i
# 			p 'list(:theta)[thetaelement0 + 1]', list(:theta)[thetaelement0 + 1]
# 			p 'thetaelement0', thetaelement0
# 			p 'theta0 - jump(options)', theta0 - jump(options) % @jtwist
# 			p 'list(:kx)[2] * (theta0 - jump(options)%@jtwist)', list(:kx)[2] * (theta0 - jump(options)%@jtwist)
# 			kx_element = list(:kx).key(list(:kx)[2] * (theta0 - jump(options)%@jtwist)) - 1  
# 			at_0 = NumRu::NetCDF.open("#@directory/#@run_name.out.nc").var('phi').get({"start" => [0, thetaelement0, kx_element, options[:ky_index] - 1], 'end' => [1, thetaelement0, kx_element, options[:ky_index] - 1] }).to_a.flatten
# 			p 'at_0', at_0
# 			at_0 = GSL::Complex.alloc(at_0)
# 			p 'at_0', at_0
# 			return (at_0 / at_0.mag).conj
# # 			pp 'theta0', theta0
# # 			pp phase_array[5][theta0]
# 			return GSL::Complex.alloc(phase_array)
# # 			new_options = options.dup
# 			new_options[:imrc] = :real
# 			thetas = gsl_vector('theta_along_field_line', new_options)
# 			at_0 = gsl_vector_complex('phi_along_field_line', new_options)[.to_a.index(0.0)]
# 			p at_0
			exit
		else
			raise CRError.new("Unknown gsl_complex requested: #{name}")
		end
	#  			eputs data; gets
	end
end

#gsl_matrix(name, options = {}) ⇒ Object



832
833
834
835
836
837
838
839
840
841
842
843
844
845
# File 'lib/gs2crmod/gsl_data.rb', line 832

def gsl_matrix(name, options={})
	options = eval(options) if options.class == String
	if options[:saturated_time_average] or options[:sta]
		raise "Not Saturated" unless @saturation_time_index
		tmax = list(:t).keys.max
		return ((@saturation_time_index..tmax).to_a.map do |t_index|
			gsl_matrix(name, options.dup.absorb({t_index: t_index, saturated_time_average: nil, sta: nil}))
		end).sum / (list(:t).values.max - list(:t)[@saturation_time_index])
	end
	if method = self.class.instance_methods.find{|meth| (name + '_gsl_matrix').to_sym == meth}
			options[:graphkit_name] = name
			return send(method, options)
	end
end

#gsl_tensor(name, options) ⇒ Object



132
133
134
# File 'lib/gs2crmod/gsl_data_3d.rb', line 132

def gsl_tensor(name, options)
	tensor = send((name.to_s+"_gsl_tensor").to_sym , options)
end

#gsl_vector(name, options = {}) ⇒ Object



115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# File 'lib/gs2crmod/gsl_data.rb', line 115

def gsl_vector(name, options={})
  Dir.chdir(@directory) do
		options[:t_index_window] ||= @scan_index_window
		options.setup_time_window
		if [:ky, :kx].include? name.to_sym
			return fix_norm(
				GSL::Vector.alloc(netcdf_file.var(name.to_s).get.to_a.sort),
				-1, options
			) # ky, ky are normalised to 1 / rho_i
	  elsif [:theta].include? name.to_sym
			#ep options; gets
			#vec = GSL::Vector.alloc(netcdf_file.var(name.to_s).get({'start' => [options[:thetamin]||0], 'end' => [options[:thetamax]||-1]}).to_a)
			vec = GSL::Vector.alloc(netcdf_file.var(name.to_s).get.to_a)
			if ith = options[:interpolate_theta]
				osize = vec.size
				newsize = (osize-1)*ith+1
				newvec = GSL::Vector.alloc(newsize)
				newvec[newsize-1] = vec[osize-1]# * ith.to_f
				for i in 0...(newsize-1)
					im = i%ith
					frac = im.to_f/ith.to_f
					#iold = (i-im)/(new_shape[-1]-1)*(shape[-1]-1)
					iold = (i-im)/ith
					newvec[i] =  (vec[iold] * (1.0-frac) + vec[iold+1] * frac)
				end
				vec = newvec
			end
			start = options[:thetamin]||0
			endv = options[:thetamax]||vec.size-1
			vec = vec.subvector(start, (endv-start+1)).dup
			return vec
		elsif name.to_sym == :t
			#options.setup_time_window
			t = GSL::Vector.alloc(netcdf_file.var(name.to_s).get('start' => [options[:begin_element]], 'end' => [options[:end_element]]).to_a)
			t = t - t[0] if options[:sync_time]
			return fix_norm(t, -1, options) # t is normalised to a/v_thi
		end
		options = eval(options) if options.class == String
		if options[:saturated_time_average] or options[:sta]
			raise "Not Saturated" unless @saturation_time_index
			tmax = list(:t).keys.max
			return ((@saturation_time_index..tmax).to_a.map do |t_index|
				gsl_vector(name, options.dup.absorb({t_index: t_index, saturated_time_average: nil, sta: nil}))
			end).sum / (list(:t).values.max - list(:t)[@saturation_time_index])
		elsif options[:time_average] or options[:ta]
			tmax = list(:t).keys.max
			start_t = 2
			return ((start_t..tmax).to_a.map do |t_index|
				gsl_vector(name, options.dup.absorb({t_index: t_index, time_average: nil, ta: nil}))
			end).sum / (list(:t).values.max - list(:t)[start_t])
		end
		if method = self.class.instance_methods.find{|meth| (name + '_gsl_vector').to_sym == meth}
			options[:graphkit_name] = name
			return send(method, options)
		end
	end
	raise "GSL Vector #{name} not found"
end

#gsl_vector_complex(name, options = {}) ⇒ Object



764
765
766
767
768
769
770
771
# File 'lib/gs2crmod/gsl_data.rb', line 764

def gsl_vector_complex(name, options={})
	options = eval(options) if options.class == String

		if method = self.class.instance_methods.find{|meth| (name + '_gsl_vector_complex').to_sym == meth}
			options[:graphkit_name] = name
			return send(method, options)
		end
end

#has_electrons?Boolean

Returns:

  • (Boolean)


16
17
18
# File 'lib/gs2crmod/properties.rb', line 16

def has_electrons?
	return @nspec.times.inject(false){|bool,  i| bool or send(:type_ + i.to_sym) =~ /electrons/i}
end

#incompleteObject



364
365
366
# File 'lib/gs2crmod/gs2.rb', line 364

def incomplete
	return (not 100 == percent_complete)
end

#ingenObject

Eventually, this will be a full port of the tool of the same name in the GS2 folder. At the moment it runs a limited set of tests for common errors in the input parameters (including type checking).



86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# File 'lib/gs2crmod/ingen.rb', line 86

def ingen
	
	# Sections
	
	# Namelist Tests
	# Grids
	# Parallelisation
	# Initialisation
  # Diagnostics	
	# Misc
	
	# Namelist Tests
	
	rcp.namelists.each do |namelist, hash|
		next if hash[:should_include].kind_of? String and not eval(hash[:should_include])
		if en = hash[:enumerator]
			#ep 'en', en, namelist
			next unless send(en[:name])
			send(en[:name]).times do |i|
				run_namelist_tests(namelist, hash, i+1)
			end
		else
			run_namelist_tests(namelist, hash)
		end
	end

	###############
	# Grid Errors #
	###############	

	# naky
	warning("Setting naky when non-linear mode is on is not recommended.") if @naky and @nonlinear_mode == "on"
	
	warning("You have set both ny and naky; naky will override ny.") if @ny and @naky

	error("Boundary options should not be periodic with finite magnetic shear") if @boundary_option == "periodic" and ((@s_hat_input and @s_hat_input.abs > 1.0e-6) or (@shat and @shat.abs > 1.0e-6))

	error("abs(shat) should not be less that 1.0e-6") if @shat and @shat.abs < 1.0e-6
	error("abs(s_hat_input) should not be less that 1.0e-6") if @s_hat_input and @s_hat_input.abs < 1.0e-6
	
	# delt 
	
	error("Please specify delt") unless @delt
	error("delt <= 0") if @delt <= 0.0
	warning("Nonlinear run with delt_minimum unspecified.") if @nonlinear_mode=="on" and not @delt_minimum

	error("delt (#@delt) < delt_minimum") if @delt and @delt_minimum and @delt < @delt_minimum

	# negrid
	warning('negrid < 8 is not a good idea!') if @negrid and @negrid < 8
	
	#################################
	# Parallelisation/Layout Errors #
	#################################
	
	# Best linear run layout is lexys
	warning("The best layout for linear runs is usually lexys.") if @nonlinear_mode=="off" and not @layout=="lexys"

	# Best nonlinear run layout is xyles
        warning("The best layout for nonlinear runs is usually xyles.") if @nonlinear_mode=="on" and not @layout=="xyles"

	# Check whether we are parallelising over x
	warning("Parallelising over x: suggest total number of processors should be: #{max_nprocs_no_x}") if actual_number_of_processors > max_nprocs_no_x and not @grid_option == "single"

	#########################
	# Initialisation Errors #
	#########################

	# Check if restart folder exists
	if @restart_file and  @restart_file =~ /^(?<folder>[^\/]+)\//
		folder = $~[:folder]
		warning("Folder #{folder}, specified in restart_file, not present. NetCDF save may fail") unless FileTest.exist?(folder)
	end

	error("Setting @restart_file as an empty string will result in hidden restart files.") if @restart_file == ""

	error("ginit_option is 'many' but is_a_restart is false") if @ginit_option == "many" and not @is_a_restart

	#####################
	# Diagnostic errors #
	#####################	

	#Check whether useful diagnostics have been omitted.

	not_set = [:write_verr, :save_for_restart, :write_nl_flux, :write_final_fields, :write_final_moments].find_all do  |diagnostic|
		not (send(diagnostic) and send(diagnostic).fortran_true?)
	end

	if not_set.size > 0
		str = not_set.inject("") do |str, diagnostic|
			str + "\n\t#{diagnostic} --- " + rcp.namelists[diagnostics_namelist][:variables][diagnostic][:description] rescue str
			end
		warning("The following useful diagnostics were not set:" + str) if str.length > 0
	end

	warning("You are running in nonlinear mode but have not switched the nonlinear flux diagnostic.") if not (@write_nl_flux and @write_nl_flux.fortran_true?) and @nonlinear_mode == "on" 

	#{
		#write_verr: "Velocity space diagnostics will not be output for this run"
	#}.each do |var, warn|
		#warning(v"#{var} not set or .false. --- " + warn) unless send(var) and send(var).fortran_true?
	#end
	
	warning("You will write out diagnostics less than 50 times") if @nstep/@nwrite < 50
	
	########################
	# Miscellaneous errors #
	########################	

	error("The run name for this run is too long. Please move some of the variable settings to the local defaults file.") if @relative_directory.size + @run_name.size > MAX_NAME_SIZE

	warning("You are submitting a nonlinear run with no dissipation.") if @nonlinear_mode == "on" and @hyper_option=="none" and @collision_model=="none"

	warning("You have no spacial implicitness: (bakdif) for one of your species. Be prepared for numerical instabilities!") if (1..@nspec).to_a.find{|i| bd = send("bakdif_#{i}") and bd == 0}

	warning("The system will abort with rapid timestep changes...") if !@abort_rapid_time_step_change or @abort_rapid_time_step_change.fortran_true?

	#############################
	# Boundary Condition Errors #
	#############################

	warning("The correct BC is not being implemented. Preferably specify nonad_zero = true in input file.") if not (@nonad_zero and @nonad_zero.fortran_true?)

end

#input_file_headerObject



861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
# File 'lib/gs2crmod/gs2.rb', line 861

def input_file_header
		run_namelist_backwards_compatibility
	<<EOF
!==============================================================================
!  		GS2 INPUT FILE automatically generated by CodeRunner 
!==============================================================================
!
!  GS2 is a gyrokinetic flux tube initial value turbulence code 
!  which can be used for fusion or astrophysical plasmas.
!  
!  	See http://gyrokinetics.sourceforge.net
!
!  CodeRunner is a framework for the automated running and analysis 
!  of large simulations. 
!
!  	See http://coderunner.sourceforge.net
!      by CodeRunner version #{CodeRunner::CODE_RUNNER_VERSION.to_s}
!
!==============================================================================

EOF
end

#jump(options) ⇒ Object



1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
# File 'lib/gs2crmod/gsl_data.rb', line 1043

def jump(options)
#	ep 'kx_shift',  kx_shift(options)
	jump =  ((kx_shift(options) / list(:kx)[2]).round)
	case options[:t_index]
	when 1
		return jump
	else
		if @g_exb and @g_exb.abs > 0
			return jump + 1
		else
			return 0
		end
	end
end

#kx_indexedObject



1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
# File 'lib/gs2crmod/gsl_data.rb', line 1102

def kx_indexed
	return cache[:kx_indexed] if cache[:kx_indexed]
	#kx = cache[:kx_array] ||= gsl_vector('kx').to_a
	#kxphys = kx.from_box_order
	#min_index = kx.min_index + 1
	#cache[:kx_indexed] ||= kx.size.times.inject({}) do |hash, kx_element|
		#hash[kx_element + 1] = kxphs
	kx = gsl_vector('kx')
	size = kx.size
	box =  GSL::Vector::Int.indgen(size) + 1
	zero_element = kx.abs.min_index
	phys = box.subvector(zero_element, size-zero_element).connect(box.subvector(0, zero_element))
	cache[:kx_indexed] = [phys.to_a, box.to_a].transpose.inject({}){|hash, (phys, box)| hash[phys] = box; hash}
end

#kx_shift(options) ⇒ Object



1036
1037
1038
1039
1040
1041
# File 'lib/gs2crmod/gsl_data.rb', line 1036

def kx_shift(options)
#	ep options
	return 0 unless @g_exb and @g_exb.abs > 0.0
	#p options
	return - list(:ky)[options[:ky_index]] * list(:t)[(options[:t_index] or list(:t).keys.max)] * @g_exb
end

#list_of_restart_filesObject Also known as: lorf

Return a list of restart file paths (relative to the run directory).



525
526
527
528
529
530
531
532
533
534
535
536
537
# File 'lib/gs2crmod/gs2.rb', line 525

def list_of_restart_files
	Dir.chdir(@directory) do
		files = Dir.entries.grep(/^\.\d+$/)
		files = Dir.entries.grep(/\.nc(?:\.\d|_ene)/) if files.size == 0
		if files.size == 0
			(Dir.entries.find_all{|dir| FileTest.directory? dir} - ['.', '..']).each do |dir|
				files = Dir.entries(dir).grep(/\.nc(?:\.\d|_ene)/).map{|file| dir + "/" + file}
				break if files.size == 0
			end
		end #if files.size == 0
		return files
	end # Dir.chdir(@directory) do
end

#max_es_heat_amp(species_index) ⇒ Object



726
727
728
# File 'lib/gs2crmod/calculations.rb', line 726

def max_es_heat_amp(species_index)
	@transient_es_heat_flux_amplification_at_species_at_ky[species_index-1].values.max
end

#max_nprocs_no_xObject

ep parallelisation



229
230
231
232
# File 'lib/gs2crmod/ingen.rb', line 229

def	max_nprocs_no_x 
	parallelisation = cumulative_gridpoints
	parallelisation[parallelisation.keys[parallelisation.keys.index('x') - 1]]
end

#max_trans_phiObject



720
721
722
723
724
# File 'lib/gs2crmod/calculations.rb', line 720

def max_trans_phi
	phivec = gsl_vector('phi2tot_over_time')
	offset = 30
	phivec.subvector(20, phivec.size - 20).max
end

#namelist_test_failed(namelist, tst) ⇒ Object



38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# File 'lib/gs2crmod/ingen.rb', line 38

def namelist_test_failed(namelist, tst)
	return  <<EOF

---------------------------
	Test Failed
---------------------------

Namelist: #{namelist}	
Test: #{tst[:test]}
Explanation: #{tst[:explanation]}

---------------------------
EOF

end

#namelist_text(namelist, enum = nil) ⇒ Object

Customize this method from Run::FortranNamelist by saying when diagnostics are not switched on.



903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
# File 'lib/gs2crmod/gs2.rb', line 903

def namelist_text(namelist, enum = nil)
	hash = rcp.namelists[namelist]
	text = ""
	ext = enum ? "_#{enum}" : ""
	text << "!#{'='*30}\n!#{hash[:description]} #{enum} \n!#{'='*30}\n" if hash[:description]
	text << "&#{namelist}#{ext}\n"
	hash[:variables].each do |var, var_hash|
		code_var = (var_hash[:code_name] or var)
		cr_var = var+ext.to_sym 
# 		ep cr_var, namelist
		if send(cr_var) and (not var_hash[:should_include] or  eval(var_hash[:should_include]))
# 				var_hash[:tests].each{|tst| eval(tst).test(send(cr_var), cr_var)}
			if String::FORTRAN_BOOLS.include? send(cr_var) # var is a Fortran Bool, not really a string
				output = send(cr_var).to_s
			elsif (v = send(cr_var)).kind_of? Complex
				output = "(#{v.real}, #{v.imag})"
			else
				output = send(cr_var).inspect
			end
			text << " #{code_var} = #{output} #{var_hash[:description] ? "! #{var_hash[:description]}": ""}\n"
		elsif namelist == :gs2_diagnostics_knobs or namelist == :diagnostics
			text << "  ! #{code_var} not specified --- #{var_hash[:description]}\n"
		end
	end
# # 	end
	text << "/\n\n"
	text
end

#nccloseObject



47
48
49
50
# File 'lib/gs2crmod/gsl_data.rb', line 47

def ncclose
	cache[:netcdf_file].close
	cache.delete(:netcdf_file)
end

#ncdump(names = nil, values = nil, extension = '.out.nc') ⇒ Object



278
279
280
281
282
# File 'lib/gs2crmod/gs2.rb', line 278

def ncdump(names=nil, values=nil, extension = '.out.nc')
	names = [names] unless !names or names.class == Array
	names.map!{|name| name.to_s} if names
	pp NumRu::NetCDF.open(@run_name + extension).vars(names).to_a.sort{|var1, var2| var1.name <=> var2.name}.map{|var| values ? [var.name, var.send(values)] : var.name.to_sym}
end

#netcdf_fileObject

def gsl_vector(name, options={}) if options or options or not [:Failed, :Complete].include? status return get_gsl_vector(name, options) else return cache[[:gsl_vector, name, options]] ||= get_gsl_vector(name, options) end end



32
33
34
35
36
37
38
39
40
41
42
43
44
45
# File 'lib/gs2crmod/gsl_data.rb', line 32

def netcdf_file
	#if @runner.cache[:runs] and (open = @runner.cache[:runs].keys.find_all{|id| @runner.cache[:runs][id][:netcdf_file]}).size > 200
	#ep "my id", id
	if (open = @runner.run_list.keys.find_all{|id|  @runner.run_list[id].cache[:netcdf_file]}).size > 200
		open = open.sort_by{|id| @runner.run_list[id].cache[:netcdf_file_otime]}
		@runner.run_list[open[0]].ncclose
	end

	if cache[:netcdf_file] and not [:Complete, :Failed].include? @status
		ncclose
	end
	cache[:netcdf_file_otime] = Time.now.to_i
	cache[:netcdf_file] ||= NumRu::NetCDF.open(@directory + '/' +  @run_name + '.out.nc')
end

#no_restartsObject

Returns true if this run has not been restarted, false if it has. This allows one to get data from the final run of a series of restarts.

Raises:

  • (NoRunnerError)


583
584
585
586
# File 'lib/gs2crmod/gs2.rb', line 583

def no_restarts
	raise NoRunnerError unless @runner
	!(@runner.runs.find{|run| run.restart_id == @id})
end

#parallelizable_meshpointsObject

Gives a guess as to the maximum number of meshpoints which can be parallelized (i.e. excluding ntheta)



831
832
833
# File 'lib/gs2crmod/gs2.rb', line 831

def parallelizable_meshpoints
	approximate_grid_size / ntheta
end

#parameter_stringObject



847
848
849
# File 'lib/gs2crmod/gs2.rb', line 847

def parameter_string
		return "#{@run_name}.in"
end

#parameter_transition(run) ⇒ Object



368
369
# File 'lib/gs2crmod/gs2.rb', line 368

def parameter_transition(run)
end

#percent_completeObject



404
405
406
# File 'lib/gs2crmod/gs2.rb', line 404

def percent_complete
	@completed_timesteps ? @completed_timesteps.to_f / @nstep.to_f * 100.0 : @percent_of_total_time
end

#physical_kx_index(box_kx_index) ⇒ Object



1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
# File 'lib/gs2crmod/gsl_data.rb', line 1122

def physical_kx_index(box_kx_index)
	return kx_indexed.key(box_kx_index)
	kx = cache[:kx_gslv] ||= gsl_vector('kx')
	return kx.from_box_order.to_a.index(kx[box_kx_index-1]) + 1
	#kx = cache[:kx_gslv] ||= gsl_vector('kx')
	#index_of_min_kx = cache[:index_of_min_kx] ||= kx.min_index + 1 # kx.min_index returns a 0-based index
	#if box_kx_index < index_of_min_kx
		#box_kx_index + (1 + kx.size - index_of_min_kx)
	#else
		#box_kx_index - (index_of_min_kx - 1)
	#end
end

#plot_efit_fileObject



1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
# File 'lib/gs2crmod/gs2.rb', line 1056

def plot_efit_file
	Dir.chdir(@directory) do
		text = File.read(@eqfile)
		text_lines = text.split("\n")
		first_line = text_lines[0].split(/\s+/)
		second_line = text_lines[1].split(/\s+/)
		nr = first_line[-2].to_i
		nz = first_line[-1].to_i
		rwidth = second_line[1].to_f
		zwidth = second_line[2].to_f
		rmag = second_line[3].to_f
		nlines = (nr.to_f/5.0).ceil
		nlines_psi = ((nr*nz).to_f/5.0).ceil
		start = 5
		f = text_lines[start...(start+=nlines)].join(" ").split(nil).map{|s| s.to_f}.to_gslv
		pres = text_lines[(start)...(start += nlines)].join(" ").split(nil).map{|s| s.to_f}.to_gslv 
		dumy = text_lines[(start)...(start += nlines)].join(" ").split(nil).map{|s| s.to_f}.to_gslv
		ffprime = text_lines[(start)...(start+= nlines)].join(" ").split(nil).map{|s| s.to_f}.to_gslv
		psi = text_lines[(start)...(start += nlines_psi)].join(" ")
		q = text_lines[(start)...(start += nlines)].join(" ").split(nil).map{|s| s.to_f}.to_gslv
		nbound = text_lines[start...start+=1].join(" ").to_i
		rz = text_lines[(start)...(start += nbound*2)].join(" ").split(/\s+/)
		rz.shift
		rbound, zbound, dummy = rz.inject([[], [], true]){|arr,val| arr[2] ? [arr[0].push(val), arr[1], false] : [arr[0], arr[1].push(val), true]}
		#rbound.shift

		psi = psi.split(/\s+/)
		psi.shift
		psi.map!{|v| v.to_f}
		psi_arr = SparseTensor.new(2)
		k = 0
		for i in 0...nz
			for j in 0...nr
				psi_arr[j,i] = psi[k]
				k+=1
			end
		end
		kit = GraphKit.quick_create([((0...nr).to_a.to_gslv - nr/2 - 1 )/(nr-1)*rwidth+rmag, ((0...nz).to_a.to_gslv-nz/2 + 1)/(nz-1) * zwidth, psi_arr], [rbound, zbound, rbound.map{|r| 0}])
		kit.gp.contour = ""
		kit.gp.view = "map"
		#kit.gp.nosurface = ""
		kit.gp.cntrparam = "levels 20"
		kit.data[0].gp.with = 'l'
		kit.data[1].gp.with = 'l lw 2 nocontours'
		kit.gnuplot
		
		kit2 = GraphKit.quick_create([pres/pres.max],[f/f.max],[q/q.max])
		kit2.data[0].title = 'Pressure/Max Pressure'
		kit2.data[1].title = 'Poloidal current function/Max poloidal current function'
		kit2.data[2].title = 'Safety factor/Max Safety factor'
		kit2.gnuplot
    		


		#p ['f', f, 'p', pres, 'ffprime', ffprime, 'nlines', nlines, 'psi', psi, 'q', q, 'nbound', nbound, 'rbound', rbound, 'zbound', zbound]


	end
end


408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# File 'lib/gs2crmod/gs2.rb', line 408

def print_out_line
	logf(:print_out_line)
	name = @run_name
	name += " (res: #@restart_id)" if @restart_id
	name += " real_id: #@real_id" if @real_id
	beginning = sprintf("%2d:%d %-60s %1s:%2.1f(%s) %3s%1s %1s",  @id, @job_no, name, @status.to_s[0,1],  @run_time.to_f / 60.0, @nprocs.to_s, percent_complete, "%", @converged.to_s)
	 if @ky
		beginning += sprintf("%3s %4s %4s", @ky, @growth_rates[@ky], @real_frequencies[@ky])
	 elsif @nonlinear_mode == "off"
	    beginning += sprintf("%3s %4s %4s", 
	     @fastest_growing_mode, @max_growth_rate, 
	    @freq_of_max_growth_rate)
	 elsif @nonlinear_mode == "on"
# 		 p @hflux_tot_stav
		 beginning += "       sat:#{saturated.to_s[0]}" 
		 beginning += sprintf(" hflux:%1.2e", @hflux_tot_stav) if  @hflux_tot_stav 
		 beginning += sprintf("+/-%1.2e", @hflux_tot_stav_error) if  @hflux_tot_stav_error
		 beginning += sprintf(" momflux:%1.2e", @es_mom_flux_stav.values.sum) if @es_mom_flux_stav and @es_mom_flux_stav.values[0]
		 beginning += '  SC:' + @spectrum_check.map{|c| c.to_s}.join(',') if @spectrum_check 
		 beginning += '  VC:' + @vspace_check.map{|c| sprintf("%d", ((c*10.0).to_i rescue -1))}.join(',') if @vspace_check 
	 end
	 beginning += "  ---#{@comment}" if @comment
	 beginning
	
end

#process_directory_code_specificObject

This method, as its name suggests, is called whenever CodeRunner is asked to analyse a run directory.this happens if the run status is not :Complete, or if the user has specified recalc_all(-A on the command line) or reprocess_all (-a on the command line).

the structure of this function is very simple: first it calls get_status to determine the directory status, i.e. :Complete, :Incomplete, :NotStarted or :Failed, then it gets the time, which is the GS2 time at the end of the run, and it also gets the run_time, which is the wall clock time of the run. Finally,if non-linear mode is switched off, it calls calculate_growth_rates_and_frequencies, and if the non-linear mode is switched on, it calls calculate_time_averaged_fluxes.



205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# File 'lib/gs2crmod/gs2.rb', line 205

def process_directory_code_specific
	run_namelist_backwards_compatibility

	unless @status == :Queueing
		get_status
	end
	
	eputs "Run #@status: #@run_name" if [:Complete,:Failed].include? @status 

	try_to_get_error_file
	@sys = @@successful_trial_system

	return if @status == :NotStarted or @status == :Failed or @status == :Queueing
	begin
		percent_complete = get_completed_timesteps/@nstep
		@percent_of_total_time = percent_complete
	rescue
		get_time
		@percent_of_total_time = @time / (@delt*@nstep) * 100.0	 rescue 0.0
	end
	return if @status == :Incomplete

	get_run_time

	calculate_results

end

#recheckObject

class ListSubmitter



723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
# File 'lib/gs2crmod/gs2.rb', line 723

def recheck
	logf(:recheck)
	Dir.chdir(@directory) do
		logi('@runner.object_id', @runner.object_id)
		log('@runner.class',  @runner.class)
		runner = @runner
		instance_variables.each{|var| instance_variable_set(var, nil) unless var == :@runner}
		begin File.delete(".code_runner_run_data") rescue Errno::ENOENT end
		begin File.delete("code_runner_results.rb") rescue Errno::ENOENT end
		logi(:@checked_converged, @checked_converged)
		logi('@runner.object_id after reset', @runner.object_id)		
		log('@runner.class',  @runner.class)
		process_directory
	end
end

#renew_info_fileObject



973
974
975
# File 'lib/gs2crmod/gs2.rb', line 973

def renew_info_file
	Dir.chdir(@directory){make_info_file("#@run_name.in")}
end

#restart(new_run) ⇒ Object



494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
# File 'lib/gs2crmod/gs2.rb', line 494

def restart(new_run)
	#new_run = self.dup
	(rcp.variables).each{|v| new_run.set(v, send(v)) if send(v)}
	SUBMIT_OPTIONS.each{|v| new_run.set(v, self.send(v)) unless new_run.send(v)}
	#(rcp.results + rcp.gs2_run_info).each{|result| new_run.set(result, nil)}
	new_run.is_a_restart = true
	new_run.ginit_option = "many"
	new_run.delt_option = "default"
	#if Dir.entries(@directory).include? "nc"
		#old_restart_run_name =  (@restart_run_name or Dir.entries(@directory + '/nc').grep(/\.nc/)[0].sub(/\.nc\.\d+$/, ''))
		#new_run.restart_file = File.expand_path("#@directory/nc/#{old_restart_run_name}.nc")
	#else
		#new_run.restart_file = File.expand_path("#@directory/#@run_name.nc")
	#end
	new_run.restart_id = @id
	new_run.restart_run_name = @run_name
	@runner.nprocs = @nprocs if @runner.nprocs == "1" # 1 is the default so this means the user probably didn't specify nprocs 
	raise "Restart must be on the same number of processors as the previous run: new is #{new_run.nprocs.inspect} and old is #{@nprocs.inspect}" if !new_run.nprocs or new_run.nprocs != @nprocs
# 	@runner.parameters.each{|var, value| new_run.set(var,value)} if @runner.parameters
#   ep @runner.parameters
  new_run.run_name = nil
	new_run.naming_pars = @naming_pars
	new_run.update_submission_parameters(new_run.parameter_hash.inspect, false) if new_run.parameter_hash 
	new_run.naming_pars.delete(:restart_id)
	new_run.generate_run_name
	#@runner.submit(new_run)
	new_run
end

#restart_chainObject



589
590
591
592
593
594
595
596
597
598
599
600
601
# File 'lib/gs2crmod/gs2.rb', line 589

def restart_chain
	if @restart_id
		return @runner.run_list[@restart_id].restart_chain
	end
	chain = []
	currid = @id
	loop do
		chain.push currid
		break unless (restrt = @runner.runs.find{|run| run.restart_id == currid})
		currid = restrt.id
	end
	return chain
end

#run_heuristic_analysisObject

This method overrides a method defined in heuristic_run_methods.rb in the CodeRunner source. It is called when CodeRunner cannot find any of its own files in the folder being analysed. It takes a GS2 input file and generates a CodeRunner info file. This means that GS2 runs which were not run using CodeRunner can nonetheless be analysed by it. In order for it to be called the -H flag must be specified on the command line.

Raises:

  • (CRMild)


979
980
981
982
983
984
985
986
987
988
989
990
# File 'lib/gs2crmod/gs2.rb', line 979

def run_heuristic_analysis
	ep 'run_heuristic_analysis', Dir.pwd
	infiles = Dir.entries.grep(/^[^\.].*\.in$/)
	ep infiles
	raise CRMild.new('No input file') unless infiles[0]
	raise CRError.new("More than one input file in this directory: \n\t#{infiles}") if infiles.size > 1
	input_file = infiles[0]
	ep 'asdf'
	@nprocs ||= "1"
	@executable ||= "/dev/null"
	make_info_file(input_file, false)
end

#run_namelist_backwards_compatibilityObject



1036
1037
1038
1039
1040
1041
# File 'lib/gs2crmod/gs2.rb', line 1036

def run_namelist_backwards_compatibility
	SPECIES_DEPENDENT_VARIABLES.each do |var|
		set(var + "_1".to_sym, (send(var + "_1".to_sym) or send(var + "_i".to_sym) or send(var)))
		set(var + "_2".to_sym, (send(var + "_2".to_sym) or send(var + "_e".to_sym)))
	end
end

#run_namelist_tests(namelist, hash, enum = nil) ⇒ Object

Checks input parameters for inconsistencies and prints a report.



56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# File 'lib/gs2crmod/ingen.rb', line 56

def run_namelist_tests(namelist, hash, enum = nil)
	ext = enum ? "_#{enum}" : ""
	hash[:must_pass].each do |tst|
		error(namelist_test_failed(namelist, tst)) unless instance_eval(tst[:test])
	end if hash[:must_pass]
	hash[:should_pass].each do |tst|
		warning(namelist_test_failed(namelist, tst)) unless instance_eval(tst[:test])
	end if hash[:should_pass]
	hash[:variables].each do |var, var_hash|
		gs2_var = (var_hash[:gs2_name] or var)
		cr_var = var+ext.to_sym 
		if send(cr_var) and (not var_hash[:should_include] or  eval(var_hash[:should_include]))
			var_hash[:must_pass].each do |tst|
				error(test_failed(namelist, cr_var, gs2_var, tst)) unless send(cr_var).instance_eval(tst[:test])
			end if var_hash[:must_pass]
			var_hash[:should_pass].each do |tst|
				warning(test_failed(namelist, cr_var, gs2_var, tst)) unless send(cr_var).instance_eval(tst[:test])
			end if var_hash[:should_pass]
			if (var_hash[:allowed_values] or var_hash[:text_options])
				tst = {test: "#{(var_hash[:allowed_values] or var_hash[:text_options]).inspect}.include? self", explanation: "The variable must have one of these values"}
				error(test_failed(namelist, cr_var, gs2_var, tst)) unless send(cr_var).instance_eval(tst[:test])
			end

		end
	end
end

#saturated_time_average(name, options) ⇒ Object



45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# File 'lib/gs2crmod/calculations.rb', line 45

def saturated_time_average(name, options)
# 	calculate_saturation_time_index unless @saturation_time_index
# 	p 'sat', @saturation_time_index, 'max', list(:t).keys.max
	raise "saturation_time_index not calculated for #@run_name" unless @saturation_time_index
	options[:t_index_window] = [@saturation_time_index, list(:t).keys.max - 1]
	#ep gsl_vector(name, {}).size
	#ep name, options
	begin
		vec = gsl_vector(name, options)
	rescue GSL::ERROR::EINVAL
		# IF the vector doesn't have enough values for each timestep (due to run aborting early?), this error will be thrown.
		options[:t_index_window] = [@saturation_time_index, gsl_vector(name, {}).size]
		retry
	rescue NoMethodError
		eputs "Warning: could not calculate #{name} saturated time average"
		return nil
	end
	
		                                                               
		tvec = gsl_vector('t', options)

		                                                               
	dt = tvec.subvector(1, tvec.size - 1) - tvec.subvector(0, tvec.size - 1)
	trapezium = (vec.subvector(1, tvec.size - 1) + vec.subvector(0, tvec.size - 1)) / 2.0
	return trapezium.mul(dt).sum / dt.sum
end

#saturated_time_average_error(name, options) ⇒ Object



72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# File 'lib/gs2crmod/calculations.rb', line 72

def saturated_time_average_error(name, options)
# 	calculate_saturation_time_index unless @saturation_time_index
	options[:t_index_window] = [@saturation_time_index, list(:t).keys.max]
	begin
		vec = gsl_vector(name, options)
		tavg = GSL::Vector.alloc(vec.size)
		vec.size.times.each{|i| tavg[i] = vec.subvector(i+1).mean}
	rescue NoMethodError
		eputs "Warning: could not calculate #{name} saturated_time_average_error"
		return nil
	end
# 	tavg = 0.0; i = 0
	
# 	tavg_vec = vec.collect{|val| tavg += val; tavg = tavg / (i+=1); tavg}
# 	ind = GSL::Vector.indgen(vec.size)
# 	i = 0
# 	begin 
# 		fit = GSL::Fit::linear(ind.subvector(i, ind.size - i) , vec.subvector(i, ind.size - i))
# # 		p fit[1].abs - 100.0 * fit[4].abs
# 		i += 1
# 		(eputs "Not Saturated"; break) if i > vec.size * 0.9
# 	end while (fit[1].abs - Math.sqrt(fit[4].abs)) > 0 
# 	p fit
# 	fit_vec = ind * fit[1] + fit[0]
# # 	p tavg.size
# 	# GraphKit.autocreate({x: {data: gsl_vector(name, {})}})
# 	(GraphKit.autocreate({x: {data: tavg}}) + GraphKit.autocreate({x: {data: vec}}) + GraphKit.autocreate({x: {data: fit_vec}})).gnuplot
	return tavg.sd
end

#sc(min) ⇒ Object



772
773
774
# File 'lib/gs2crmod/calculations.rb', line 772

def sc(min)
	return @spectrum_check.min >= min
end

#set_nprocsObject



792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
# File 'lib/gs2crmod/gs2.rb', line 792

def set_nprocs

	if (nprocs_in = @nprocs) =~ /^x/
		max = max_nprocs_no_x
		nodes = 0
		@nprocs = "#{nodes}#{nprocs_in}"	 
		loop do
			nodes += 1
			@nprocs = "#{nodes}#{nprocs_in}"	 
			if actual_number_of_processors > max 
				nodes -= 1
				@nprocs = "#{nodes}#{nprocs_in}"	 
				break
			end
		end
	end
end

#show_graphObject



480
481
482
483
484
485
486
487
# File 'lib/gs2crmod/gs2.rb', line 480

def show_graph
	thegraph = special_graph('phi2tot_vs_time_all_kys')
	thegraph.title += " for g_exb = #{@g_exb.to_f.to_s}"
	thegraph.show
	sleep 1.5
# 	@decaying = Feedback.get_boolean("Is the graph decaying?")
	thegraph.kill
end

#spec_chec(min, *dirns) ⇒ Object



758
759
760
761
762
763
764
765
766
767
768
769
770
# File 'lib/gs2crmod/calculations.rb', line 758

def spec_chec(min, *dirns)
	return @spectrum_check.zip([0, 1, 2]).inject(true) do |bool, (check,dirn)|
		unless dirns.include? dirn
			bool and true
		else
			unless check >= min
				false
			else
				bool and true
			end
		end
	end
end

#species_letterObject



566
567
568
# File 'lib/gs2crmod/gs2.rb', line 566

def species_letter
	species_type(1).downcase[0,1]
end

#species_type(index) ⇒ Object



570
571
572
573
574
575
576
577
578
# File 'lib/gs2crmod/gs2.rb', line 570

def species_type(index)	
	if rcp.variables.include? :type_1 
		type = send(:type_ + index.to_sym)
	else
		types = rcp.variables.find_all{|var| var.to_s =~ /^type/}.map{|var| send(var)}
		type = types[index.to_i - 1]
	end
	type
end

#standardize_restart_filesObject

Put restart files in the conventional location, i.e. nc/run_name.proc



543
544
545
546
547
548
549
550
551
552
# File 'lib/gs2crmod/gs2.rb', line 543

def standardize_restart_files
	Dir.chdir(@directory) do
		FileUtils.makedirs('nc')
		list_of_restart_files.each do |file|
			proc_id = file.scan(/\.\d+$|_ene$/)[0]
			#p 'proc_id', proc_id
			FileUtils.mv(file, "nc/#@run_name.nc#{proc_id}")
		end
	end
end

#stopObject



1044
1045
1046
# File 'lib/gs2crmod/gs2.rb', line 1044

def stop
	`touch #@directory/#@run_name.stop`
end

#test_failed(namelist, var, gs2_var, tst) ⇒ Object



18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# File 'lib/gs2crmod/ingen.rb', line 18

def test_failed(namelist, var, gs2_var, tst)
	return  <<EOF

---------------------------
	Test Failed
---------------------------

Namelist: #{namelist}	
Variable: #{var}
GS2 Name: #{gs2_var}
Value: #{send(var)}
Test: #{tst[:test]}
Explanation: #{tst[:explanation]}

---------------------------
EOF

end

#update_physics_parameters_from_miller_input_file(file) ⇒ Object



943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
# File 'lib/gs2crmod/gs2.rb', line 943

def update_physics_parameters_from_miller_input_file(file)
	hash = self.class.parse_input_file(file)
	hash[:parameters].each do |var, val|
		set(var,val)
	end
	hash[:theta_grid_parameters].each do |var, val|
		next if  [:ntheta, :nperiod].include? var
		set(var, val)
	end
	hash[:dist_fn_knobs].each do |var, val|
		next unless [:g_exb].include? var
		set(var, val)
	end
	hash[:theta_grid_eik_knobs].each do |var, val|
		next unless [:s_hat_input, :beta_prime_input].include? var
		set(var, val)
	end
	
	hash[:species_parameters_2].each do |var, val|
		#next unless [:s_hat_input, :beta_prime_input].include? var
		set((var.to_s + '_2').to_sym, val)
	end
	hash[:species_parameters_1].each do |var, val|
		#next unless [:s_hat_input, :beta_prime_input].include? var
		set((var.to_s + '_1').to_sym, val)
	end
end

#vim_outputObject Also known as: vo



1048
1049
1050
# File 'lib/gs2crmod/gs2.rb', line 1048

def vim_output
	system "vim -Ro #{output_file} #{error_file} #@directory/#@run_name.error #@directory/#@run_name.out "
end

#vim_stdoutObject Also known as: vo1



1052
1053
1054
# File 'lib/gs2crmod/gs2.rb', line 1052

def vim_stdout
	system "vim -Ro #{output_file} "
end

#visually_check_growth_rate(ky = nil) ⇒ Object



464
465
466
467
468
469
470
471
472
473
474
475
476
477
# File 'lib/gs2crmod/gs2.rb', line 464

def visually_check_growth_rate(ky=nil)
	logf :visually_check_growth_rate
	phi_vec = gsl_vector(:phi2_by_ky_over_time, {ky: ky})
	t_vec = gsl_vector(:t)
	constant, growth_rate = GSL::Fit::linear(t_vec, 0.5*GSL::Sf::log(phi_vec)).slice(0..1)
	eputs growth_rate

	graph = @@phi2tot_vs_time_template.graph(["#{constant} * exp (2 * #{growth_rate} * x)"], [[[t_vec, phi_vec], "u 1:2 title 'phi2tot #{@run_name}' w p"]], {"set_show_commands" => "\nset log y\n", "point_size"=>'1.0'})
# 	eputs graph.inline_data.inspect
	graph.show
	gets
	graph.kill

end

#warning(message) ⇒ Object



7
8
9
# File 'lib/gs2crmod/ingen.rb', line 7

def warning(message)
	eputs "Warning: " + message; sleep 0.3
end

#write_input_fileObject



788
789
790
# File 'lib/gs2crmod/gs2.rb', line 788

def write_input_file
	File.open(@run_name + ".in", 'w'){|file| file.puts input_file_text}
end