Class: GMP::Z

Inherits:
Integer
  • Object
show all
Defined in:
ext/gmpz.c,
ext/gmp.c,
ext/gmpz.c

Overview

GMP Multiple Precision Integer.

Instances of this class can store variables of the type mpz_t. This class also contains many methods that act as the functions for mpz_t variables, as well as a few methods that attempt to make this library more Ruby-ish.

Class Method Summary collapse

Instance Method Summary collapse

Constructor Details

#initialize(*args) ⇒ Object



623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
# File 'ext/gmpz.c', line 623

VALUE r_gmpz_initialize(int argc, VALUE *argv, VALUE self)
{
  MP_INT *self_val;
  int base = 0;

  // Set up the base if 2 arguments are passed
  if (argc == 2) { // only ok if String, Fixnum
    if (STRING_P(argv[0])) {  // first arg must be a String
      if (FIXNUM_P(argv[1])) {  //  second arg must be a Fixnum
        base = FIX2INT(argv[1]);
        if ( base != 0 && ( base < 2 || base > 62) )
          rb_raise (rb_eRangeError, "base must be either 0 or between 2 and 62");
      } else {
        rb_raise (rb_eTypeError, "base must be a Fixnum between 2 and 62, not a %s.", rb_class2name (rb_class_of (argv[1])));
      }
    } else {
      rb_raise(
        rb_eTypeError,
        "GMP::Z.new() must be passed a String as the 1st argument (not a %s), if a base is passed as the 2nd argument.",
        rb_class2name (rb_class_of (argv[0]))
      );
    }
  }

  if (argc != 0) {
    mpz_get_struct (self,self_val);
    mpz_set_value (self_val, argv[0], base);
  }
  return Qnil;
}

Class Method Details

.absObject

call-seq:

a.abs

Returns the absolute value of a.

.addObject

call-seq:

GMP::Z.add(rop, op1, op2)

.addmulObject

.cdiv_q_2expObject

.cdiv_r_2expObject

.comObject

call-seq:

a.com

Returns the one’s complement of a.

.congruent?Boolean

Returns:

  • (Boolean)

.divexactObject

Functional Mappings

.divisible?Boolean

Returns:

  • (Boolean)

.facObject

call-seq:

GMP::Z.fac(n)

Returns n!, the factorial of n.

Examples:

  • GMP::Z.fac(0) #=> 1

  • GMP::Z.fac(1) #=> 1

  • GMP::Z.fac(2) #=> 2

  • GMP::Z.fac(3) #=> 6

  • GMP::Z.fac(4) #=> 24

.fdiv_q_2expObject

.fdiv_r_2expObject

.fibObject

call-seq:

GMP::Z.fib(n)

Returns F[n], the nth Fibonacci number.

Examples:

  • GMP::Z.fib(1) #=> 1

  • GMP::Z.fib(2) #=> 1

  • GMP::Z.fib(3) #=> 2

  • GMP::Z.fib(4) #=> 3

  • GMP::Z.fib(5) #=> 5

  • GMP::Z.fib(6) #=> 8

  • GMP::Z.fib(7) #=> 13

.GMP::Z.jacobi(a, b) ⇒ Object

Calculate the Jacobi symbol (a/b). This is defined only for b odd and positive.



1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
# File 'ext/gmpz.c', line 1975

VALUE r_gmpzsg_jacobi(VALUE klass, VALUE a, VALUE b)
{
  MP_INT *a_val, *b_val;
  int res_val;
  int free_a_val = 0;
  int free_b_val = 0;
  (void)klass;
  
  if (GMPZ_P(a)) {
    mpz_get_struct(a, a_val);
  } else if (FIXNUM_P(a)) {
    mpz_temp_alloc(a_val);
    mpz_init_set_ui(a_val, FIX2NUM(a));
    free_a_val = 1;
  } else if (BIGNUM_P(a)) {
    mpz_temp_from_bignum(a_val, a);
    free_a_val = 1;
  } else {
    typeerror_as(ZXB, "a");
  }
  
  if (GMPZ_P(b)) {
    mpz_get_struct(b, b_val);
    if (mpz_sgn(b_val) != 1)
      rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is non-positive.");
    if (mpz_even_p(b_val))
      rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is even.");
  } else if (FIXNUM_P(b)) {
    if (FIX2NUM(b) <= 0)
      rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is non-positive.");
    if (FIX2NUM(b) % 2 == 0)
      rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is even.");
    mpz_temp_alloc(b_val);
    mpz_init_set_ui(b_val, FIX2NUM(b));
    free_b_val = 1;
  } else if (BIGNUM_P(b)) {
    mpz_temp_from_bignum(b_val, b);
    if (mpz_sgn(b_val) != 1) {
      mpz_temp_free(b_val);
      rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is non-positive.");
    }
    if (mpz_even_p(b_val)) {
      mpz_temp_free(b_val);
      rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is even.");
    }
    free_b_val = 1;
  } else {
    typeerror_as(ZXB, "b");
  }
  
  res_val = mpz_jacobi(a_val, b_val);
  if (free_a_val) { mpz_temp_free(a_val); }
  if (free_b_val) { mpz_temp_free(b_val); }
  return INT2FIX(res_val);
}

.lcmObject

Functional Mappings

.mulObject

.mul_2expObject

.negObject

call-seq:

a.neg
-a

Returns -a.

.newObject

Initializing, Assigning Integers

.nextprimeObject

call-seq:

n.nextprime
n.next_prime

Returns the next prime greater than n.

This function uses a probabilistic algorithm to identify primes. For practical purposes it’s adequate, the chance of a composite passing will be extremely small.

.powObject

call-seq:

GMP::Z.pow(a, b)

Returns a raised to b. The case 0^0 yields 1.

.sqrtObject

call-seq:

a.sqrt

Returns the truncated integer part of the square root of a.

.subObject

.submulObject

.tdiv_q_2expObject

.tdiv_r_2expObject

Instance Method Details

#%Object

#&Object

call-seq:

a & b

Returns a bitwise-and b. b must be an instance of one of the following:

  • GMP::Z

  • Fixnum

  • Bignum

#*(b) ⇒ Object

Multiplies a with b. a must be an instance of one of

  • GMP::Z

  • Fixnum

  • GMP::Q

  • GMP::F

  • Bignum



1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
# File 'ext/gmpz.c', line 1047

VALUE r_gmpz_mul(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val, *res_val;
  VALUE res;

  mpz_get_struct(self,self_val);

  if (GMPZ_P(arg)) {
    mpz_make_struct_init(res, res_val);
    mpz_get_struct(arg,arg_val);
    mpz_mul(res_val, self_val, arg_val);
  } else if (FIXNUM_P(arg)) {
    mpz_make_struct_init(res, res_val);
    mpz_mul_si(res_val, self_val, FIX2NUM(arg));
  } else if (GMPQ_P(arg)) {
    return r_gmpq_mul(arg, self);
  } else if (GMPF_P(arg)) {
#ifndef MPFR
    return r_gmpf_mul(arg, self);
#else
    return rb_funcall(arg, rb_intern("*"), 1, self);
#endif
  } else if (BIGNUM_P(arg)) {
    mpz_make_struct_init(res, res_val);
    mpz_set_bignum(res_val, arg);
    mpz_mul(res_val, res_val, self_val);
  } else {
    typeerror(ZQFXB);
  }
  return res;
}

#**Object

call-seq:

a ** b

Returns a raised to b. The case 0^0 yields 1.

#+(b) ⇒ Object

Adds a to b. b must be an instance of one of:

  • GMP::Z

  • Fixnum

  • GMP::Q

  • GMP::F

  • Bignum



877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
# File 'ext/gmpz.c', line 877

VALUE r_gmpz_add(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val, *res_val;
  VALUE res;

  mpz_get_struct(self,self_val);

  if (GMPZ_P(arg)) {
    mpz_get_struct(arg,arg_val);
    mpz_make_struct_init(res, res_val);
    mpz_add(res_val, self_val, arg_val);
  } else if (FIXNUM_P(arg)) {
    mpz_make_struct_init(res, res_val);
    if (FIX2NUM(arg) > 0)
      mpz_add_ui(res_val, self_val, FIX2NUM(arg));
    else
      mpz_sub_ui(res_val, self_val, -FIX2NUM(arg));
  } else if (GMPQ_P(arg)) {
    return r_gmpq_add(arg, self);
  } else if (GMPF_P(arg)) {
#ifndef MPFR
    return r_gmpf_add(arg, self);
#else
    return rb_funcall(arg, rb_intern("+"), 1, self);
#endif
  } else if (BIGNUM_P(arg)) {
    mpz_make_struct_init(res, res_val);
    mpz_init(res_val);
    mpz_set_bignum(res_val, arg);
    mpz_add(res_val, res_val, self_val);
  } else {
    typeerror(ZQFXB);
  }
  return res;
}

#-(b) ⇒ Object

Subtracts b from a. b must be an instance of one of:

  • GMP::Z

  • Fixnum

  • GMP::Q

  • GMP::F

  • Bignum



959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
# File 'ext/gmpz.c', line 959

VALUE r_gmpz_sub(VALUE self, VALUE arg)
{
  MP_RAT *res_val_q, *arg_val_q;
  MP_INT *self_val, *arg_val, *res_val;
  MP_FLOAT *arg_val_f, *res_val_f;
  VALUE res;
  unsigned long prec;

  mpz_get_struct(self,self_val);

  if (GMPZ_P(arg)) {
    mpz_make_struct_init(res, res_val);
    mpz_get_struct(arg,arg_val);
    mpz_sub (res_val, self_val, arg_val);
  } else if (FIXNUM_P(arg)) {
    mpz_make_struct_init(res, res_val);
    if (FIX2NUM(arg) > 0)
      mpz_sub_ui (res_val, self_val, FIX2NUM(arg));
    else
      mpz_add_ui (res_val, self_val, -FIX2NUM(arg));
  } else if (GMPQ_P(arg)) {
    mpq_make_struct_init(res, res_val_q);
    mpq_get_struct(arg,arg_val_q);
    mpz_set (mpq_denref(res_val_q), mpq_denref(arg_val_q));
    mpz_mul (mpq_numref(res_val_q), mpq_denref(arg_val_q), self_val);
    mpz_sub (mpq_numref(res_val_q), mpq_numref(res_val_q), mpq_numref(arg_val_q));
  } else if (GMPF_P(arg)) {
    mpf_get_struct_prec (arg, arg_val_f, prec);
    mpf_make_struct_init(res, res_val_f, prec);
    mpf_set_z (res_val_f, self_val);
    mpf_sub (res_val_f, res_val_f, arg_val_f);
  } else if (BIGNUM_P(arg)) {
    mpz_make_struct_init(res, res_val);
    mpz_set_bignum (res_val, arg);
    mpz_sub (res_val, self_val, res_val);
  } else {
    typeerror (ZQFXB);
  }
  return res;
}

#-@Object

#/Object

Integer Division

#<Object

call-seq:

a < b

Returns whether a is strictly less than b.

#<<Object

call-seq:

a << n

Returns a times 2 raised to n. This operation can also be defined as a left shift by n bits.

#<=Object

call-seq:

a <= b

Returns whether a is less than or equal to b.

#<=>(b) ⇒ Object

Returns negative if a is less than b.

Returns 0 if a is equal to b.

Returns positive if a is greater than b.



2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
# File 'ext/gmpz.c', line 2219

VALUE r_gmpz_cmp(VALUE self, VALUE arg)
{
  MP_INT *self_val;
  int res;
  mpz_get_struct(self,self_val);
  res = mpz_cmp_value(self_val, arg);
  if (res > 0)
    return INT2FIX(1);
  else if (res == 0)
    return INT2FIX(0);
  else
    return INT2FIX(-1);
}

#==Object

#>Object

call-seq:

a > b

Returns whether a is strictly greater than b.

#>=Object

call-seq:

a >= b

Returns whether a is greater than or equal to b.

#>>Object

unsorted

#[](index) ⇒ Object

Gets the bit at index, returned as either true or false.



2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
# File 'ext/gmpz.c', line 2537

VALUE r_gmpz_getbit(VALUE self, VALUE bitnr)
{
  MP_INT *self_val;
  unsigned long bitnr_val;
  mpz_get_struct(self, self_val);
  if (FIXNUM_P(bitnr)) {
    bitnr_val = FIX2NUM (bitnr);
  } else {
    typeerror_as(X, "index");
  }
  return mpz_tstbit(self_val, bitnr_val)?Qtrue:Qfalse;
}

#[]=(index) ⇒ Object

Sets the bit at index to x.



2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
# File 'ext/gmpz.c', line 2508

VALUE r_gmpz_setbit(VALUE self, VALUE bitnr, VALUE set_to)
{
  MP_INT *self_val;
  unsigned long bitnr_val;

  mpz_get_struct (self, self_val);

  if (FIXNUM_P (bitnr)) {
    if (FIX2NUM (bitnr) < 0) {
      rb_raise(rb_eRangeError, "index must be nonnegative");
    }
    bitnr_val = FIX2NUM (bitnr);
  } else {
    typeerror_as (X, "index");
  }
  if (RTEST (set_to)) {
    mpz_setbit (self_val, bitnr_val);
  } else {
    mpz_clrbit (self_val, bitnr_val);
  }
  return Qnil;
}

#^Object

call-seq:

a ^ b

Returns a bitwise exclusive-or b. b must be an instance of one of the following:

  • GMP::Z

  • Fixnum

  • Bignum

#absObject

call-seq:

a.abs

Returns the absolute value of a.

#abs!Object

call-seq:

a.abs!

Sets a to its absolute value.

#add!(_b_) ⇒ Object

Adds a to b in-place, setting a to the sum. b must be an instance of one of:

  • GMP::Z

  • Fixnum

  • GMP::Q

  • GMP::F

  • Bignum



924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
# File 'ext/gmpz.c', line 924

VALUE r_gmpz_add_self(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val;

  mpz_get_struct(self,self_val);

  if (GMPZ_P(arg)) {
    mpz_get_struct(arg,arg_val);
    mpz_add(self_val, self_val, arg_val);
  } else if (FIXNUM_P(arg)) {
    if (FIX2NUM(arg) > 0)
      mpz_add_ui(self_val, self_val, FIX2NUM(arg));
    else
      mpz_sub_ui(self_val, self_val, -FIX2NUM(arg));
  } else if (BIGNUM_P(arg)) {
    mpz_temp_from_bignum(arg_val, arg);
    mpz_add(self_val, self_val, arg_val);
    mpz_temp_free(arg_val);
  } else {
    typeerror(ZXB);
  }
  return Qnil;
}

#addmul!(b, c) ⇒ Object

Sets a to a plus b times c. b and c must each be an instance of one of

  • GMP::Z

  • Fixnum

  • Bignum

Since:

  • 0.4.19



1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
# File 'ext/gmpz.c', line 1090

static VALUE r_gmpz_addmul_self(VALUE self, VALUE b, VALUE c)
{
  MP_INT *self_val, *b_val, *c_val;
  int free_b_val = 0;

  if (GMPZ_P(b)) {
    mpz_get_struct(b, b_val);
  } else if (FIXNUM_P(b)) {
    mpz_temp_alloc(b_val);
    mpz_init_set_si(b_val, FIX2NUM(b));
    free_b_val = 1;
  } else if (BIGNUM_P(b)) {
    mpz_temp_from_bignum(b_val, b);
    free_b_val = 1;
  } else {
    typeerror_as(ZXB, "addend");
  }
  mpz_get_struct(self, self_val);

  if (GMPZ_P(c)) {
    mpz_get_struct(c, c_val);
    mpz_addmul(self_val, b_val, c_val);
  } else if (FIXNUM_P(c)) {
    if (FIX2NUM(c) < 0)
    {
      if (free_b_val) { mpz_temp_free(b_val); }
      rb_raise(rb_eRangeError, "multiplicand (Fixnum) must be nonnegative");
    }
    mpz_addmul_ui(self_val, b_val, FIX2NUM(c));
  } else if (BIGNUM_P(c)) {
    mpz_temp_from_bignum(c_val, c);
    mpz_addmul(self_val, b_val, c_val);
    mpz_temp_free(c_val);
  } else {
    if (free_b_val)
      mpz_temp_free(b_val);
    typeerror_as(ZXB, "multiplicand");
  }
  if (free_b_val)
    mpz_temp_free(b_val);
  return self;
}

#cdivObject

call-seq:

n.cdiv(d)

Divide n by d, forming a quotient q. cdiv rounds q up towards _+infinity_. The c stands for “ceil”.

q will satisfy n=q*d+r.

This function calculates only the quotient.

#cmodObject

call-seq:

n.cmod(d)

Divides n by d, forming a remainder r. r will have the opposite sign of d. The c stands for “ceil”.

r will satisfy n=q*d+r, and r will satisfy 0 <= abs( r ) < abs( d ).

This function calculates only the remainder.

#cmpabsObject

#coerce(arg) ⇒ Object



23
24
25
26
# File 'ext/gmp.c', line 23

static VALUE r_gmpz_coerce(VALUE self, VALUE arg)
{
  return rb_assoc_new(r_gmpzsg_new(1, &arg, cGMP_Z), self);
}

#comObject

call-seq:

a.com

Returns the one’s complement of a.

#com!Object

call-seq:

a.com!

Sets a to its one’s complement.

#divisible?(b) ⇒ Boolean

Returns true if a is divisible by b. b can be an instance any of the following:

  • GMP::Z

  • Fixnum

  • Bignum

Returns:

  • (Boolean)

Since:

  • 0.5.23



1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
# File 'ext/gmpz.c', line 1466

static VALUE r_gmpz_divisible(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val;
  int res;
  mpz_get_struct (self, self_val);
  
  if (FIXNUM_P (arg) && FIX2NUM (arg) > 0) {
    mpz_temp_alloc(arg_val);
    mpz_init_set_ui(arg_val, FIX2NUM(arg));
    res = mpz_divisible_ui_p (self_val, FIX2NUM (arg));
    mpz_temp_free(arg_val);
  } else if (FIXNUM_P (arg)) {
    mpz_temp_alloc(arg_val);
    mpz_make_struct_init (arg, arg_val);
    mpz_init_set_si(arg_val, FIX2NUM(arg));
    res = mpz_divisible_p (self_val, arg_val);
    mpz_temp_free(arg_val);
  } else if (BIGNUM_P (arg)) {
    mpz_temp_from_bignum(arg_val, arg);
    res = mpz_divisible_p (self_val, arg_val);
    mpz_temp_free(arg_val);
  } else if (GMPZ_P (arg)) {
    mpz_get_struct(arg, arg_val);
    res = mpz_divisible_p (self_val, arg_val);
  } else {
    typeerror_as (ZXB, "argument");
  }
  return (res != 0) ? Qtrue : Qfalse;
}

#eql?(b) ⇒ Boolean

Returns true if a is equal to b. a and b must then be equal in cardinality, and both be instances of GMP::Z. Otherwise, returns false. a.eql?(b) if and only if b.class == GMP::Z, and a.hash == b.hash.

Returns:

  • (Boolean)

Since:

  • 0.4.7



2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
# File 'ext/gmpz.c', line 2339

VALUE r_gmpz_eql(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val;
  mpz_get_struct(self,self_val);
  
  if (GMPZ_P(arg)) {
    mpz_get_struct(arg, arg_val);
    return (mpz_cmp (self_val, arg_val) == 0) ? Qtrue : Qfalse;
  }
  else {
    return Qfalse;
  }
}

#even?Boolean

call-seq:

a.even?

Determines whether a is even. Returns true or false.

Returns:

  • (Boolean)

#fdivObject

call-seq:

n.fdiv(d)

Divide n by d, forming a quotient q. fdiv rounds q down towards -infinity. The f stands for “floor”.

q will satisfy n=q*d+r.

This function calculates only the quotient.

#fmodObject

call-seq:

n.fmod(d)

Divides n by d, forming a remainder r. r will have the same sign as d. The f stands for “floor”.

r will satisfy n=q*d+r, and r will satisfy 0 <= abs( r ) < abs( d ).

This function calculates only the remainder.

The remainder can be negative, so the return value is the absolute value of the remainder.

#gcdObject

#gcdext(b) ⇒ Object

Returns the greatest common divisor of a and b, in addition to s and t, the coefficients satisfying a*s + b*t = g. g is always positive, even if one or both of a and b are negative. s and t are chosen such that abs(s) <= abs(b) and abs(t) <= abs(a).

Since:

  • 0.5.23



1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
# File 'ext/gmpz.c', line 1792

VALUE r_gmpz_gcdext(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val, *res_val, *s_val, *t_val;
  VALUE res, s, t, ary;
  int free_arg_val = 0;

  mpz_get_struct (self,self_val);

  if (GMPZ_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_make_struct_init (s, s_val);
    mpz_make_struct_init (t, t_val);
    mpz_get_struct (arg, arg_val);
    mpz_gcdext (res_val, s_val, t_val, self_val, arg_val);
  } else if (FIXNUM_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_make_struct_init (s, s_val);
    mpz_make_struct_init (t, t_val);
    mpz_temp_alloc (arg_val);
    mpz_init_set_ui (arg_val, FIX2NUM(arg));
    free_arg_val = 1;
    mpz_gcdext (res_val, s_val, t_val, self_val, arg_val);
  } else if (BIGNUM_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_make_struct_init (s, s_val);
    mpz_make_struct_init (t, t_val);
    mpz_set_bignum (res_val, arg);
    mpz_gcdext (res_val, s_val, t_val, res_val, self_val);
  } else {
    typeerror (ZXB);
  }

  if (free_arg_val)
    mpz_temp_free (arg_val);

  ary = rb_ary_new3 (3, res, s, t);
  return ary;
}

#gcdext2(b) ⇒ Object

Returns the greatest common divisor of a and b, in addition to s, the coefficient satisfying a*s + b*t = g. g is always positive, even if one or both of a and b are negative. s and t are chosen such that abs(s) <= abs(b) and abs(t) <= abs(a).

Since:

  • 0.5.x



1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
# File 'ext/gmpz.c', line 1842

VALUE r_gmpz_gcdext2(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val, *res_val, *s_val;
  VALUE res, s, ary;
  int free_arg_val = 0;

  mpz_get_struct (self,self_val);

  if (GMPZ_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_make_struct_init (s, s_val);
    mpz_get_struct (arg, arg_val);
    mpz_gcdext (res_val, s_val, NULL, self_val, arg_val);
  } else if (FIXNUM_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_make_struct_init (s, s_val);
    mpz_temp_alloc (arg_val);
    mpz_init_set_ui (arg_val, FIX2NUM(arg));
    free_arg_val = 1;
    mpz_gcdext (res_val, s_val, NULL, self_val, arg_val);
  } else if (BIGNUM_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_make_struct_init (s, s_val);
    mpz_set_bignum (res_val, arg);
    mpz_gcdext (res_val, s_val, NULL, res_val, self_val);
  } else {
    typeerror (ZXB);
  }

  if (free_arg_val)
    mpz_temp_free (arg_val);

  ary = rb_ary_new3 (2, res, s);
  return ary;
}

#hashObject

Returns the computed hash value of a. This method first converts a into a String (base 10), then calls String#hash on the result, returning the hash value. a.eql?(b) if and only if b.class == GMP::Z, and a.hash == b.hash.

Since:

  • 0.4.7



2363
2364
2365
2366
2367
2368
# File 'ext/gmpz.c', line 2363

VALUE r_gmpz_hash(VALUE self)
{
  ID to_s_sym = rb_intern("to_s");
  ID hash_sym = rb_intern("hash");
  return rb_funcall(rb_funcall(self, to_s_sym, 0), hash_sym, 0);
}

#initialize_copy(orig) ⇒ Object



654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
# File 'ext/gmpz.c', line 654

static VALUE r_gmpz_initialize_copy(VALUE copy, VALUE orig) {
  MP_INT *orig_z, *copy_z;

  if (copy == orig) return copy;

  if (TYPE(orig) != T_DATA) {
    rb_raise(rb_eTypeError, "wrong argument type");
  }

  mpz_get_struct (orig, orig_z);
  mpz_get_struct (copy, copy_z);
  mpz_set (copy_z, orig_z);

  return copy;
}

#invert(b) ⇒ Object

Returns the inverse of a modulo b. If the inverse exists, the return value is non-zero and the result will be non-negative and less than b. If an inverse doesn’t exist, the result is undefined.

Since:

  • 0.2.11



1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
# File 'ext/gmpz.c', line 1921

VALUE r_gmpz_invert(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val, *res_val;
  VALUE res;

  mpz_get_struct (self,self_val);

  if (GMPZ_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_get_struct (arg, arg_val);
    mpz_invert (res_val, self_val, arg_val);
  } else if (FIXNUM_P (arg)) {
    mpz_temp_alloc(arg_val);
    mpz_init_set_ui(arg_val, FIX2NUM(arg));
    mpz_make_struct_init (res, res_val);
    mpz_invert (res_val, self_val, arg_val);
  } else if (BIGNUM_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_set_bignum (res_val, arg);
    mpz_invert (res_val, res_val, self_val);
  } else {
    typeerror (ZXB);
  }
  return res;
}

#jacobi(b) ⇒ Object

Calculate the Jacobi symbol (a/b). This is defined only for b odd and positive.



1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
# File 'ext/gmpz.c', line 1954

VALUE r_gmpz_jacobi(VALUE self, VALUE b)
{
  MP_INT *self_val, *b_val;
  int res_val;
  mpz_get_struct(self, self_val);
  mpz_get_struct(   b,    b_val);
  if (mpz_sgn(b_val) != 1)
    rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is non-positive.");
  if (mpz_even_p(b_val))
    rb_raise(rb_eRangeError, "Cannot take Jacobi symbol (a/b) where b is even.");
  res_val = mpz_jacobi(self_val, b_val);
  return INT2FIX(res_val);
}

#lastbits_posObject

#lastbits_sgnObject

#lcm(b) ⇒ Object

Returns the least common multiple of a and b. The result is always positive even if one or both of a or b are negative.

Since:

  • 0.2.11



1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
# File 'ext/gmpz.c', line 1887

VALUE r_gmpz_lcm(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val, *res_val;
  VALUE res;

  mpz_get_struct (self,self_val);

  if (GMPZ_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_get_struct (arg, arg_val);
    mpz_lcm (res_val, self_val, arg_val);
  } else if (FIXNUM_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_lcm_ui (res_val, self_val, FIX2NUM(arg));
  } else if (BIGNUM_P (arg)) {
    mpz_make_struct_init (res, res_val);
    mpz_set_bignum (res_val, arg);
    mpz_lcm (res_val, res_val, self_val);
  } else {
    typeerror (ZXB);
  }
  return res;
}

#legendre(p) ⇒ Object

Calculate the Legendre symbol (a/p). This is defined only for p an odd positive prime, and for such p it’s identical to the Jacobi symbol.



2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
# File 'ext/gmpz.c', line 2038

VALUE r_gmpz_legendre(VALUE self, VALUE p)
{
  MP_INT *self_val, *p_val;
  int res_val;
  mpz_get_struct(self, self_val);
  mpz_get_struct(   p,    p_val);
  if (mpz_sgn(p_val) != 1)
    rb_raise(rb_eRangeError, "Cannot take Legendre symbol (a/p) where p is non-positive.");
  if (mpz_even_p(p_val))
    rb_raise(rb_eRangeError, "Cannot take Legendre symbol (a/p) where p is even.");
  if (mpz_probab_prime_p(p_val, 5) == 0)
    rb_raise(rb_eRangeError, "Cannot take Legendre symbol (a/p) where p is composite.");
  res_val = mpz_legendre(self_val, p_val);
  return INT2FIX(res_val);
}

#negObject

call-seq:

a.neg
-a

Returns -a.

#neg!Object

call-seq:

a.neg!

Sets a to -a.

#nextprimeObject Also known as: next_prime

call-seq:

n.nextprime
n.next_prime

Returns the next prime greater than n.

This function uses a probabilistic algorithm to identify primes. For practical purposes it’s adequate, the chance of a composite passing will be extremely small.

#nextprime!Object Also known as: next_prime!

call-seq:

n.nextprime!
n.next_prime!

Sets n to the next prime greater than n.

This function uses a probabilistic algorithm to identify primes. For practical purposes it’s adequate, the chance of a composite passing will be extremely small.

#odd?Boolean

call-seq:

a.odd?

Determines whether a is odd. Returns true or false.

Returns:

  • (Boolean)

#popcountObject

call-seq:

a.popcount

If a >= 0, return the population count of a, which is the number of 1 bits in the binary representation. If a < 0, the number of 1s is infinite, and the return value is INT2FIX(ULONG_MAX), the largest possible unsigned long.

#power?Boolean

call-seq:

p.power?

Returns true if p is a perfect power, i.e., if there exist integers a and b, with b > 1, such that p equals a raised to the power b.

Under this definition both 0 and 1 are considered to be perfect powers. Negative values of integers are accepted, but of course can only be odd perfect powers.

Returns:

  • (Boolean)

#powmod(b, c) ⇒ Object

Returns a raised to b modulo c.

Negative b is supported if an inverse a^-1 mod c exists. If an inverse doesn’t exist then a divide by zero is raised.



1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
# File 'ext/gmpz.c', line 1546

VALUE r_gmpz_powm(VALUE self, VALUE exp, VALUE mod)
{
  MP_INT *self_val, *res_val, *mod_val, *exp_val;
  VALUE res;
  int free_mod_val = 0;

  if (GMPZ_P(mod)) {
    mpz_get_struct(mod, mod_val);
    if (mpz_sgn(mod_val) <= 0) {
      rb_raise(rb_eRangeError, "modulus must be positive");
    }
  } else if (FIXNUM_P(mod)) {
    if (FIX2NUM(mod) <= 0) {
      rb_raise(rb_eRangeError, "modulus must be positive");
    }
    mpz_temp_alloc(mod_val);
    mpz_init_set_ui(mod_val, FIX2NUM(mod));
    free_mod_val = 1;
  } else if (BIGNUM_P(mod)) {
    mpz_temp_from_bignum(mod_val, mod);
    if (mpz_sgn(mod_val) <= 0) {
      mpz_temp_free(mod_val);
      rb_raise(rb_eRangeError, "modulus must be positive");
    }
    free_mod_val = 1;
  } else {
    typeerror_as(ZXB, "modulus");
  }
  mpz_make_struct_init(res, res_val);
  mpz_get_struct(self, self_val);

  if (GMPZ_P(exp)) {
    mpz_get_struct(exp, exp_val);
    if (mpz_sgn(mod_val) < 0) {
      rb_raise(rb_eRangeError, "exponent must be nonnegative");
    }
    mpz_powm(res_val, self_val, exp_val, mod_val);
  } else if (FIXNUM_P(exp)) {
    if (FIX2NUM(exp) < 0)
    {
      if (free_mod_val)
        mpz_temp_free(mod_val);
      rb_raise(rb_eRangeError, "exponent must be nonnegative");
    }
    mpz_powm_ui(res_val, self_val, FIX2NUM(exp), mod_val);
  } else if (BIGNUM_P(exp)) {
    mpz_temp_from_bignum(exp_val, exp);
    mpz_powm(res_val, self_val, exp_val, mod_val);
    mpz_temp_free(exp_val);
  } else {
    if (free_mod_val)
      mpz_temp_free(mod_val);
    typeerror_as(ZXB, "exponent");
  }
  if (free_mod_val)
    mpz_temp_free(mod_val);
  return res;
}

#probab_prime?Boolean

Number Theoretic Functions

Returns:

  • (Boolean)

#remove(f) ⇒ Object

Remove all occurrences of the factor f from n, returning the result as r. t, how many such occurrences were removed, is also returned.



2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
# File 'ext/gmpz.c', line 2061

VALUE r_gmpz_remove(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val, *res_val;
  VALUE res;
#if __GNU_MP_VERSION>2
  unsigned long removed_val;
#else
  int   removed_val;
#endif
  int free_arg_val = 0;

  mpz_get_struct(self, self_val);

  if (GMPZ_P(arg)) {
    mpz_get_struct(arg,arg_val);
    if (mpz_sgn(arg_val) != 1)
      rb_raise(rb_eRangeError, "argument must be positive");
  } else if (FIXNUM_P(arg)) {
    if (FIX2NUM(arg) <= 0)
      rb_raise(rb_eRangeError, "argument must be positive");
    mpz_temp_alloc(arg_val);
    mpz_init_set_ui(arg_val, FIX2NUM(arg));
  } else if (BIGNUM_P(arg)) {
    mpz_temp_from_bignum(arg_val, arg);
    if (mpz_sgn(arg_val) != 1) {
      mpz_temp_free(arg_val);
      rb_raise(rb_eRangeError, "argument must be positive");
    }
  } else {
    typeerror(ZXB);
  }

  mpz_make_struct_init(res, res_val);
  removed_val = mpz_remove(res_val, self_val, arg_val);

  if (free_arg_val)
    mpz_temp_free(arg_val);

  return rb_assoc_new(res, INT2FIX(removed_val));
}

#rootObject

call-seq:

a.root(b)

Returns the truncated integer part of the bth root of a.

#scan0(starting_bit) ⇒ Object

Scan a, starting from bit starting_bit, towards more significant bits, until the first 0 bit is found. Return the index of the found bit.

If the bit at starting_bit is already what’s sought, then starting_bit is returned.

If there’s no bit found, then INT2FIX(ULONG_MAX) is returned. This will happen in scan0 past the end of a negative number.



2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
# File 'ext/gmpz.c', line 2460

VALUE r_gmpz_scan0(VALUE self, VALUE bitnr)
{
  MP_INT *self_val;
  int bitnr_val;
  mpz_get_struct (self, self_val);
  if (FIXNUM_P (bitnr)) {
    bitnr_val = FIX2INT (bitnr);
  } else {
    typeerror_as (X, "index");
  }
  return INT2FIX (mpz_scan0 (self_val, bitnr_val));
}

#scan1(starting_bit) ⇒ Object

Scan a, starting from bit starting_bit, towards more significant bits, until the first 1 bit is found. Return the index of the found bit.

If the bit at starting_bit is already what’s sought, then starting_bit is returned.

If there’s no bit found, then INT2FIX(ULONG_MAX) is returned. This will happen in scan1 past the end of a nonnegative number.



2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
# File 'ext/gmpz.c', line 2486

VALUE r_gmpz_scan1(VALUE self, VALUE bitnr)
{
  MP_INT *self_val;
  int bitnr_val;

  mpz_get_struct (self, self_val);

  if (FIXNUM_P (bitnr)) {
    bitnr_val = FIX2INT (bitnr);
  } else {
    typeerror_as (X, "index");
  }

  return INT2FIX (mpz_scan1 (self_val, bitnr_val));
}

#sgnObject

Returns +1 if a > 0, 0 if a == 0, and -1 if a < 0.



2322
2323
2324
2325
2326
2327
# File 'ext/gmpz.c', line 2322

VALUE r_gmpz_sgn(VALUE self)
{
  MP_INT *self_val;
  mpz_get_struct(self, self_val);
  return INT2FIX(mpz_sgn(self_val));
}

#sizeObject

Return the size of a measured in number of limbs. If a is zero, the returned value will be zero.

Since:

  • 0.4.19



2625
2626
2627
2628
2629
2630
# File 'ext/gmpz.c', line 2625

VALUE r_gmpz_size(VALUE self)
{
  MP_INT *self_val;
  mpz_get_struct(self, self_val);
  return INT2FIX(mpz_size(self_val));
}

#size_in_binObject

Return the size of a measured in number of digits in binary. The sign of a is ignored, just the absolute value is used. If a is zero the return value is 1.

Since:

  • 0.2.11



2604
2605
2606
2607
2608
2609
# File 'ext/gmpz.c', line 2604

VALUE r_gmpz_size_in_bin(VALUE self)
{
  MP_INT *self_val;
  mpz_get_struct (self, self_val);
  return INT2FIX (mpz_sizeinbase (self_val, 2));
}

#sizeinbaseObject Also known as: size_in_base

#sqrtObject

call-seq:

a.sqrt

Returns the truncated integer part of the square root of a.

#sqrt!Object

call-seq:

a.sqrt!

Sets a to the truncated integer part of its square root.

#sqrtremObject

#square?Boolean

call-seq:

p.square?

Returns true if p is a perfect square, i.e., if the square root of p is an integer. Under this definition both 0 and 1 are considered to be perfect squares.

Returns:

  • (Boolean)

#sub!(b) ⇒ Object

Subtracts b from a in-place, setting a to the difference. b must be an instance of one of:

  • GMP::Z

  • Fixnum

  • GMP::Q

  • GMP::F

  • Bignum



1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
# File 'ext/gmpz.c', line 1012

VALUE r_gmpz_sub_self(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val;

  mpz_get_struct(self,self_val);

  if (GMPZ_P(arg)) {
    mpz_get_struct(arg, arg_val);
    mpz_sub (self_val, self_val, arg_val);
  } else if (FIXNUM_P(arg)) {
    if (FIX2NUM(arg) > 0)
      mpz_sub_ui (self_val, self_val, FIX2NUM(arg));
    else
      mpz_add_ui (self_val, self_val, -FIX2NUM(arg));
  } else if (BIGNUM_P(arg)) {
    mpz_temp_from_bignum(arg_val, arg);
    mpz_sub (self_val, self_val, arg_val);
    mpz_temp_free (arg_val);
  } else {
    typeerror (ZXB);
  }
  return Qnil;
}

#submul!(b, c) ⇒ Object

Sets a to a minus b times c. b and c must each be an instance of one of

  • GMP::Z

  • Fixnum

  • Bignum

Since:

  • 0.5.23



1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
# File 'ext/gmpz.c', line 1144

static VALUE r_gmpz_submul_self(VALUE self, VALUE b, VALUE c)
{
  MP_INT *self_val, *b_val, *c_val;
  int free_b_val = 0;

  if (GMPZ_P(b)) {
    mpz_get_struct(b, b_val);
  } else if (FIXNUM_P(b)) {
    mpz_temp_alloc(b_val);
    mpz_init_set_si(b_val, FIX2NUM(b));
    free_b_val = 1;
  } else if (BIGNUM_P(b)) {
    mpz_temp_from_bignum(b_val, b);
    free_b_val = 1;
  } else {
    typeerror_as(ZXB, "addend");
  }
  mpz_get_struct(self, self_val);

  if (GMPZ_P(c)) {
    mpz_get_struct(c, c_val);
    mpz_submul(self_val, b_val, c_val);
  } else if (FIXNUM_P(c)) {
    if (FIX2NUM(c) < 0)
    {
      if (free_b_val) { mpz_temp_free(b_val); }
      rb_raise(rb_eRangeError, "multiplicand (Fixnum) must be nonnegative");
    }
    mpz_submul_ui(self_val, b_val, FIX2NUM(c));
  } else if (BIGNUM_P(c)) {
    mpz_temp_from_bignum(c_val, c);
    mpz_submul(self_val, b_val, c_val);
    mpz_temp_free(c_val);
  } else {
    if (free_b_val)
      mpz_temp_free(b_val);
    typeerror_as(ZXB, "multiplicand");
  }
  if (free_b_val)
    mpz_temp_free(b_val);
  return self;
}

#swap(b) ⇒ Object

Efficiently swaps the contents of a with b. b must be an instance of GMP::Z.

Returns:

  • nil



720
721
722
723
724
725
726
727
728
729
730
# File 'ext/gmpz.c', line 720

VALUE r_gmpz_swap(VALUE self, VALUE arg)
{
  MP_INT *self_val, *arg_val;
  if (!GMPZ_P(arg)) {
    rb_raise(rb_eTypeError, "Can't swap GMP::Z with object of other class");
  }
  mpz_get_struct(self, self_val);
  mpz_get_struct(arg, arg_val);
  mpz_swap(self_val,arg_val);
  return Qnil;
}

#tdivObject

call-seq:

n.tdiv(d)

Divides n by d, forming a quotient q. tdiv rounds q towards zero. The t stands for “truncate”.

q will satisfy n=q*d+r, and r will satisfy 0 <= abs( r ) < abs( d ).

This function calculates only the quotient.

#tmodObject

call-seq:

n.tmod(d)

Divides n by d, forming a remainder r. r will have the same sign as n. The t stands for “truncate”.

r will satisfy n=q*d+r, and r will satisfy 0 <= abs( r ) < abs( d ).

This function calculates only the remainder.

The remainder can be negative, so the return value is the absolute value of the remainder.

#to_dObject

TODO:

Implement mpz_fits_slong_p

Returns a as a Float if a fits in a Float.

Otherwise returns the least significant part of a, with the same sign as a.

If a is too big to fit in a Float, the returned result is probably not very useful. To find out if the value will fit, use the function mpz_fits_slong_p (Unimplemented).



780
781
782
783
784
785
786
# File 'ext/gmpz.c', line 780

VALUE r_gmpz_to_d(VALUE self)
{
  MP_INT *self_val;
  mpz_get_struct(self, self_val);

  return rb_float_new(mpz_get_d(self_val));
}

#to_iObject

TODO:

Implement mpz_fits_slong_p

Returns a as an Fixnum if a fits into a Fixnum.

Otherwise returns the least significant part of a, with the same sign as a.

If a is too big to fit in a Fixnum, the returned result is probably not very useful. To find out if the value will fit, use the function mpz_fits_slong_p (Unimplemented).



751
752
753
754
755
756
757
758
759
760
761
762
763
764
# File 'ext/gmpz.c', line 751

VALUE r_gmpz_to_i(VALUE self)
{
  MP_INT *self_val;
  char *str;
  VALUE res;

  mpz_get_struct(self, self_val);
  if (mpz_fits_slong_p(self_val))
    return rb_int2inum(mpz_get_si(self_val));
  str = mpz_get_str(NULL, 0, self_val);
  res = rb_cstr2inum(str, 10);
  free(str);
  return res;
}

#to_s(*args) ⇒ Object

call-seq:

a.to_s(base = 10)
a.to_s(:bin)
a.to_s(:oct)
a.to_s(:dec)
a.to_s(:hex)

Returns a, as a String. If base is not provided, then the decimal representation will be returned.

From the GMP Manual:

Convert a to a string of digits in base base. The base argument may vary from 2 to 62 or from -2 to -36.

For base in the range 2..36, digits and lower-case letters are used; for -2..-36, digits and upper-case letters are used; for 37..62, digits, upper-case letters, and lower-case letters (in that significance order) are used.



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
# File 'ext/gmpz.c', line 810

VALUE r_gmpz_to_s(int argc, VALUE *argv, VALUE self)
{
  MP_INT *self_val;
  char *str;
  VALUE res;
  VALUE base;
  int base_val = 10;
  ID base_id;
  const char * bin_base = "bin";                            /* binary */
  const char * oct_base = "oct";                             /* octal */
  const char * dec_base = "dec";                           /* decimal */
  const char * hex_base = "hex";                       /* hexadecimal */
  ID bin_base_id = rb_intern(bin_base);
  ID oct_base_id = rb_intern(oct_base);
  ID dec_base_id = rb_intern(dec_base);
  ID hex_base_id = rb_intern(hex_base);

  rb_scan_args(argc, argv, "01", &base);
  if (NIL_P(base)) { base = INT2FIX(10); }           /* default value */
  if (FIXNUM_P(base)) {
    base_val = FIX2INT(base);
    if ((base_val >=   2 && base_val <= 62) ||
        (base_val >= -36 && base_val <= -2)) {
      /* good base */
    } else {
      base_val = 10;
      rb_raise(rb_eRangeError, "base must be within [2, 62] or [-36, -2].");
    }
  } else if (SYMBOL_P(base)) {
    base_id = rb_to_id(base);
    if (base_id == bin_base_id) {
      base_val =  2;
    } else if (base_id == oct_base_id) {
      base_val =  8;
    } else if (base_id == dec_base_id) {
      base_val = 10;
    } else if (base_id == hex_base_id) {
      base_val = 16;
    } else {
      base_val = 10;  /* should raise an exception here. */
    }
  }

  Data_Get_Struct(self, MP_INT, self_val);
  str = mpz_get_str(NULL, base_val, self_val);
  res = rb_str_new2(str);
  free (str);

  return res;
}

#tshrObject

call-seq:

n.tshr(d)

Divides n by 2^d, forming a quotient q. tshr rounds q towards zero. The t stands for “truncate”.

q will satisfy n=q*d+r, and r will satisfy 0 <= abs( r ) < abs( d ).

This function calculates only the quotient.

#|Object

call-seq:

a | b

Returns a bitwise inclusive-or b. b must be an instance of one of the following:

  • GMP::Z

  • Fixnum

  • Bignum