Module: FFI::Library

Defined in:
lib/ffi/library.rb

Overview

This module is the base to use native functions.

A basic usage may be:

require 'ffi'

module Hello
  extend FFI::Library
  ffi_lib FFI::Library::LIBC
  attach_function 'puts', [ :string ], :int
end

Hello.puts("Hello, World")

Constant Summary collapse

CURRENT_PROCESS =
FFI::CURRENT_PROCESS
LIBC =
FFI::Platform::LIBC
FlagsMap =

Flags used in #ffi_lib.

This map allows you to supply symbols to #ffi_lib_flags instead of the actual constants.

{
  :global => DynamicLibrary::RTLD_GLOBAL,
  :local => DynamicLibrary::RTLD_LOCAL,
  :lazy => DynamicLibrary::RTLD_LAZY,
  :now => DynamicLibrary::RTLD_NOW
}

Class Method Summary collapse

Instance Method Summary collapse

Class Method Details

.extended(mod) ⇒ nil

Test if extended object is a Module. If not, raise RuntimeError.

Parameters:

  • mod

    extended object

Returns:

  • (nil)

Raises:

  • (RuntimeError)

    if mod is not a Module



86
87
88
# File 'lib/ffi/library.rb', line 86

def self.extended(mod)
  raise RuntimeError.new("must only be extended by module") unless mod.kind_of?(Module)
end

Instance Method Details

#attach_function(func, args, returns, options = {}) ⇒ FFI::VariadicInvoker #attach_function(name, func, args, returns, options = {}) ⇒ FFI::VariadicInvoker

Attach C function func to this module.

Overloads:

  • #attach_function(func, args, returns, options = {}) ⇒ FFI::VariadicInvoker

    Examples:

    attach function without an explicit name

    module Foo
      extend FFI::Library
      ffi_lib FFI::Library::LIBC
      attach_function :malloc, [:size_t], :pointer
    end
    # now callable via Foo.malloc
  • #attach_function(name, func, args, returns, options = {}) ⇒ FFI::VariadicInvoker

    Examples:

    attach function with an explicit name

    module Bar
      extend FFI::Library
      ffi_lib FFI::Library::LIBC
      attach_function :c_malloc, :malloc, [:size_t], :pointer
    end
    # now callable via Bar.c_malloc

Parameters:

  • name (#to_s)

    name of ruby method to attach as

  • func (#to_s)

    name of C function to attach

  • args (Array<Symbol>)

    an array of types

  • returns (Symbol) (defaults to: nil)

    type of return value

  • options (Hash) (defaults to: nil)

    a customizable set of options

Options Hash (options):

  • :blocking (Boolean) — default: @blocking

    set to true if the C function is a blocking call

  • :convention (Symbol) — default: :default

    calling convention (see #ffi_convention)

  • :enums (FFI::Enums)
  • :type_map (Hash)

Returns:

Raises:



234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# File 'lib/ffi/library.rb', line 234

def attach_function(name, func, args, returns = nil, options = nil)
  mname, a2, a3, a4, a5 = name, func, args, returns, options
  cname, arg_types, ret_type, opts = (a4 && (a2.is_a?(String) || a2.is_a?(Symbol))) ? [ a2, a3, a4, a5 ] : [ mname.to_s, a2, a3, a4 ]

  # Convert :foo to the native type
  arg_types = arg_types.map { |e| find_type(e) }
  options = {
    :convention => ffi_convention,
    :type_map => defined?(@ffi_typedefs) ? @ffi_typedefs : nil,
    :blocking => defined?(@blocking) && @blocking,
    :enums => defined?(@ffi_enums) ? @ffi_enums : nil,
  }

  @blocking = false
  options.merge!(opts) if opts && opts.is_a?(Hash)

  # Try to locate the function in any of the libraries
  invokers = []
  ffi_libraries.each do |lib|
    if invokers.empty?
      begin
        function = nil
        function_names(cname, arg_types).find do |fname|
          function = lib.find_function(fname)
        end
        raise LoadError unless function

        invokers << if arg_types.length > 0 && arg_types[arg_types.length - 1] == FFI::NativeType::VARARGS
          VariadicInvoker.new(function, arg_types, find_type(ret_type), options)

        else
          Function.new(find_type(ret_type), arg_types, function, options)
        end

      rescue LoadError
      end
    end
  end
  invoker = invokers.compact.shift
  raise FFI::NotFoundError.new(cname.to_s, ffi_libraries.map { |lib| lib.name }) unless invoker

  invoker.attach(self, mname.to_s)
  invoker
end

#attach_variable(mname, cname, type) ⇒ DynamicLibrary::Symbol #attach_variable(cname, type) ⇒ DynamicLibrary::Symbol

Attach C variable cname to this module.

Overloads:

  • #attach_variable(mname, cname, type) ⇒ DynamicLibrary::Symbol

    Examples:

    module Bar
      extend FFI::Library
      ffi_lib 'my_lib'
      attach_variable :c_myvar, :myvar, :long
    end
    # now callable via Bar.c_myvar

    Parameters:

    • mname (#to_s)

      name of ruby method to attach as

    • cname (#to_s)

      name of C variable to attach

    • type (DataConverter, Struct, Symbol, Type)

      C variable’s type

  • #attach_variable(cname, type) ⇒ DynamicLibrary::Symbol

    Examples:

    module Bar
      extend FFI::Library
      ffi_lib 'my_lib'
      attach_variable :myvar, :long
    end
    # now callable via Bar.myvar

    Parameters:

    • mname (#to_s)

      name of ruby method to attach as

    • type (DataConverter, Struct, Symbol, Type)

      C variable’s type

Returns:

Raises:



331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
# File 'lib/ffi/library.rb', line 331

def attach_variable(mname, a1, a2 = nil)
  cname, type = a2 ? [ a1, a2 ] : [ mname.to_s, a1 ]
  address = nil
  ffi_libraries.each do |lib|
    begin
      address = lib.find_variable(cname.to_s)
      break unless address.nil?
    rescue LoadError
    end
  end

  raise FFI::NotFoundError.new(cname, ffi_libraries) if address.nil? || address.null?
  if type.is_a?(Class) && type < FFI::Struct
    # If it is a global struct, just attach directly to the pointer
    s = s = type.new(address) # Assigning twice to suppress unused variable warning
    self.module_eval <<-code, __FILE__, __LINE__
      @@ffi_gvar_#{mname} = s
      def self.#{mname}
        @@ffi_gvar_#{mname}
      end
    code

  else
    sc = Class.new(FFI::Struct)
    sc.layout :gvar, find_type(type)
    s = sc.new(address)
    #
    # Attach to this module as mname/mname=
    #
    self.module_eval <<-code, __FILE__, __LINE__
      @@ffi_gvar_#{mname} = s
      def self.#{mname}
        @@ffi_gvar_#{mname}[:gvar]
      end
      def self.#{mname}=(value)
        @@ffi_gvar_#{mname}[:gvar] = value
      end
    code

  end

  address
end

#bitmask(name, values) ⇒ FFI::Bitmask #bitmask(*args) ⇒ FFI::Bitmask #bitmask(values) ⇒ FFI::Bitmask #bitmask(native_type, name, values) ⇒ FFI::Bitmask #bitmask(native_type, *args) ⇒ FFI::Bitmask #bitmask(native_type, values) ⇒ FFI::Bitmask

Create a new FFI::Bitmask

Overloads:

  • #bitmask(name, values) ⇒ FFI::Bitmask

    Create a named bitmask

    Examples:

    bitmask :foo, [:red, :green, :blue] # bits 0,1,2 are used
    bitmask :foo, [:red, :green, 5, :blue] # bits 0,5,6 are used

    Parameters:

    • name (Symbol)

      for new bitmask

    • values (Array<Symbol, Integer>)

      for new bitmask

  • #bitmask(*args) ⇒ FFI::Bitmask

    Create an unamed bitmask

    Examples:

    bm = bitmask :red, :green, :blue # bits 0,1,2 are used
    bm = bitmask :red, :green, 5, blue # bits 0,5,6 are used

    Parameters:

    • args (Symbol, Integer)

      values for new bitmask

  • #bitmask(values) ⇒ FFI::Bitmask

    Create an unamed bitmask

    Examples:

    bm = bitmask [:red, :green, :blue] # bits 0,1,2 are used
    bm = bitmask [:red, :green, 5, blue] # bits 0,5,6 are used

    Parameters:

    • values (Array<Symbol, Integer>)

      for new bitmask

  • #bitmask(native_type, name, values) ⇒ FFI::Bitmask

    Create a named enum and specify the native type.

    Examples:

    bitmask FFI::Type::UINT64, :foo, [:red, :green, :blue]

    Parameters:

    • native_type (FFI::Type)

      native type for new bitmask

    • name (Symbol)

      for new bitmask

    • values (Array<Symbol, Integer>)

      for new bitmask

  • #bitmask(native_type, *args) ⇒ FFI::Bitmask

    Examples:

    bitmask FFI::Type::UINT64, :red, :green, :blue

    Parameters:

    • native_type (FFI::Type)

      native type for new bitmask

    • args (Symbol, Integer)

      values for new bitmask

  • #bitmask(native_type, values) ⇒ FFI::Bitmask

    Create a named enum and specify the native type.

    Examples:

    bitmask FFI::Type::UINT64, [:red, :green, :blue]

    Parameters:

    • native_type (FFI::Type)

      native type for new bitmask

    • values (Array<Symbol, Integer>)

      for new bitmask

Returns:



550
551
552
# File 'lib/ffi/library.rb', line 550

def bitmask(*args)
  generic_enum(FFI::Bitmask, *args)
end

#callback(name, params, ret) ⇒ FFI::CallbackInfo #callback(params, ret) ⇒ FFI::CallbackInfo

Overloads:

Returns:

Raises:

  • (ArgumentError)


384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
# File 'lib/ffi/library.rb', line 384

def callback(*args)
  raise ArgumentError, "wrong number of arguments" if args.length < 2 || args.length > 3
  name, params, ret = if args.length == 3
    args
  else
    [ nil, args[0], args[1] ]
  end

  native_params = params.map { |e| find_type(e) }
  raise ArgumentError, "callbacks cannot have variadic parameters" if native_params.include?(FFI::Type::VARARGS)
  options = Hash.new
  options[:convention] = ffi_convention
  options[:enums] = @ffi_enums if defined?(@ffi_enums)
  cb = FFI::CallbackInfo.new(find_type(ret), native_params, options)

  # Add to the symbol -> type map (unless there was no name)
  unless name.nil?
    typedef cb, name
  end

  cb
end

#enum(name, values) ⇒ FFI::Enum #enum(*args) ⇒ FFI::Enum #enum(values) ⇒ FFI::Enum #enum(native_type, name, values) ⇒ FFI::Enum #enum(native_type, *args) ⇒ FFI::Enum #enum(native_type, values) ⇒ FFI::Enum

Create a new Enum.

Overloads:

  • #enum(name, values) ⇒ FFI::Enum

    Create a named enum.

    Examples:

    enum :foo, [:zero, :one, :two]  # named enum

    Parameters:

    • name (Symbol)

      name for new enum

    • values (Array)

      values for enum

  • #enum(*args) ⇒ FFI::Enum

    Create an unnamed enum.

    Examples:

    enum :zero, :one, :two  # unnamed enum

    Parameters:

    • args

      values for enum

  • #enum(values) ⇒ FFI::Enum

    Create an unnamed enum.

    Examples:

    enum [:zero, :one, :two]  # unnamed enum, equivalent to above example

    Parameters:

    • values (Array)

      values for enum

  • #enum(native_type, name, values) ⇒ FFI::Enum

    Create a named enum and specify the native type.

    Examples:

    enum FFI::Type::UINT64, :foo, [:zero, :one, :two]  # named enum

    Parameters:

    • native_type (FFI::Type)

      native type for new enum

    • name (Symbol)

      name for new enum

    • values (Array)

      values for enum

  • #enum(native_type, *args) ⇒ FFI::Enum

    Create an unnamed enum and specify the native type.

    Examples:

    enum FFI::Type::UINT64, :zero, :one, :two  # unnamed enum

    Parameters:

    • native_type (FFI::Type)

      native type for new enum

    • args

      values for enum

  • #enum(native_type, values) ⇒ FFI::Enum

    Create an unnamed enum and specify the native type.

    Examples:

    enum Type::UINT64, [:zero, :one, :two]  # unnamed enum, equivalent to above example

    Parameters:

    • native_type (FFI::Type)

      native type for new enum

    • values (Array)

      values for enum

Returns:



507
508
509
# File 'lib/ffi/library.rb', line 507

def enum(*args)
  generic_enum(FFI::Enum, *args)
end

#enum_type(name) ⇒ FFI::Enum

Find an enum by name.

Parameters:

  • name

Returns:



557
558
559
# File 'lib/ffi/library.rb', line 557

def enum_type(name)
  @ffi_enums.find(name) if defined?(@ffi_enums)
end

#enum_value(symbol) ⇒ FFI::Enum

Find an enum by a symbol it contains.

Parameters:

  • symbol

Returns:



564
565
566
# File 'lib/ffi/library.rb', line 564

def enum_value(symbol)
  @ffi_enums.__map_symbol(symbol)
end

#ffi_convention(convention = nil) ⇒ Symbol

Note:

:stdcall is typically used for attaching Windows API functions

Set the calling convention for #attach_function and #callback

Parameters:

  • convention (Symbol) (defaults to: nil)

    one of :default, :stdcall

Returns:

  • (Symbol)

    the new calling convention

See Also:



163
164
165
166
167
# File 'lib/ffi/library.rb', line 163

def ffi_convention(convention = nil)
  @ffi_convention ||= :default
  @ffi_convention = convention if convention
  @ffi_convention
end

#ffi_lib(*names) ⇒ Array<DynamicLibrary>

Load native libraries.

Parameters:

  • names (Array)

    names of libraries to load

Returns:

Raises:

  • (LoadError)

    if a library cannot be opened



95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# File 'lib/ffi/library.rb', line 95

def ffi_lib(*names)
  raise LoadError.new("library names list must not be empty") if names.empty?

  lib_flags = defined?(@ffi_lib_flags) ? @ffi_lib_flags : FFI::DynamicLibrary::RTLD_LAZY | FFI::DynamicLibrary::RTLD_LOCAL
  ffi_libs = names.map do |name|

    if name == FFI::CURRENT_PROCESS
      FFI::DynamicLibrary.open(nil, FFI::DynamicLibrary::RTLD_LAZY | FFI::DynamicLibrary::RTLD_LOCAL)

    else
      libnames = (name.is_a?(::Array) ? name : [ name ]).map(&:to_s).map { |n| [ n, FFI.map_library_name(n) ].uniq }.flatten.compact
      lib = nil
      errors = {}

      libnames.each do |libname|
        begin
          orig = libname
          lib = FFI::DynamicLibrary.open(libname, lib_flags)
          break if lib

        rescue Exception => ex
          ldscript = false
          if ex.message =~ /(([^ \t()])+\.so([^ \t:()])*):([ \t])*(invalid ELF header|file too short|invalid file format)/
            if File.read($1) =~ /(?:GROUP|INPUT) *\( *([^ \)]+)/
              libname = $1
              ldscript = true
            end
          end

          if ldscript
            retry
          else
            # TODO better library lookup logic
            unless libname.start_with?("/") || FFI::Platform.windows?
              path = ['/usr/lib/','/usr/local/lib/','/opt/local/lib/'].find do |pth|
                File.exist?(pth + libname)
              end
              if path
                libname = path + libname
                retry
              end
            end

            libr = (orig == libname ? orig : "#{orig} #{libname}")
            errors[libr] = ex
          end
        end
      end

      if lib.nil?
        raise LoadError.new(errors.values.join(".\n"))
      end

      # return the found lib
      lib
    end
  end

  @ffi_libs = ffi_libs
end

#ffi_lib_flags(*flags) ⇒ Fixnum

Sets library flags for #ffi_lib.

Examples:

ffi_lib_flags(:lazy, :local) # => 5

Parameters:

  • flags (Symbol, )

    (see FlagsMap)

Returns:

  • (Fixnum)

    the new value



196
197
198
# File 'lib/ffi/library.rb', line 196

def ffi_lib_flags(*flags)
  @ffi_lib_flags = flags.inject(0) { |result, f| result | FlagsMap[f] }
end

#ffi_librariesArray<FFI::DynamicLibrary>

Get FFI libraries loaded using #ffi_lib.

Returns:

Raises:

  • (LoadError)

    if no libraries have been loaded (using #ffi_lib)

See Also:



173
174
175
176
# File 'lib/ffi/library.rb', line 173

def ffi_libraries
  raise LoadError.new("no library specified") if !defined?(@ffi_libs) || @ffi_libs.empty?
  @ffi_libs
end

#find_type(t) ⇒ Type

Find a type definition.

Parameters:

Returns:



571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
# File 'lib/ffi/library.rb', line 571

def find_type(t)
  if t.kind_of?(Type)
    t

  elsif defined?(@ffi_typedefs) && @ffi_typedefs.has_key?(t)
    @ffi_typedefs[t]

  elsif t.is_a?(Class) && t < Struct
    Type::POINTER

  elsif t.is_a?(DataConverter)
    # Add a typedef so next time the converter is used, it hits the cache
    typedef Type::Mapped.new(t), t

  end || FFI.find_type(t)
end

#function_names(name, arg_types) ⇒ Array<String>

Note:

Function names on windows may be decorated if they are using stdcall. See

Note that decorated names can be overridden via def files. Also note that the windows api, although using, doesn’t have decorated names.

This function returns a list of possible names to lookup.

Parameters:

  • name (#to_s)

    function name

  • arg_types (Array)

    function’s argument types

Returns:

  • (Array<String>)


289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
# File 'lib/ffi/library.rb', line 289

def function_names(name, arg_types)
  result = [name.to_s]
  if ffi_convention == :stdcall
    # Get the size of each parameter
    size = arg_types.inject(0) do |mem, arg|
      size = arg.size
      # The size must be a multiple of 4
      size += (4 - size) % 4
      mem + size
    end

    result << "_#{name.to_s}@#{size}" # win32
    result << "#{name.to_s}@#{size}" # win64
  end
  result
end

#generic_enum(klass, *args) ⇒ Object (private)

Generic enum builder

@param [Class] klass can be one of FFI::Enum or FFI::Bitmask
@param args (see #enum or #bitmask)


452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
# File 'lib/ffi/library.rb', line 452

def generic_enum(klass, *args)
  native_type = args.first.kind_of?(FFI::Type) ? args.shift : nil
  name, values = if args[0].kind_of?(Symbol) && args[1].kind_of?(Array)
    [ args[0], args[1] ]
  elsif args[0].kind_of?(Array)
    [ nil, args[0] ]
  else
    [ nil, args ]
  end
  @ffi_enums = FFI::Enums.new unless defined?(@ffi_enums)
  @ffi_enums << (e = native_type ? klass.new(native_type, values, name) : klass.new(values, name))

  # If called with a name, add a typedef alias
  typedef(e, name) if name
  e
end

#typedef(old, add, info = nil) ⇒ FFI::Enum, FFI::Type

Register or get an already registered type definition.

To register a new type definition, old should be a Type. add is in this case the type definition.

If old is a DataConverter, a Type::Mapped is returned.

If old is :enum

  • and add is an Array, a call to #enum is made with add as single parameter;

  • in others cases, info is used to create a named enum.

If old is a key for type map, #typedef get old type definition.

Parameters:

Returns:



424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# File 'lib/ffi/library.rb', line 424

def typedef(old, add, info=nil)
  @ffi_typedefs = Hash.new unless defined?(@ffi_typedefs)

  @ffi_typedefs[add] = if old.kind_of?(FFI::Type)
    old

  elsif @ffi_typedefs.has_key?(old)
    @ffi_typedefs[old]

  elsif old.is_a?(DataConverter)
    FFI::Type::Mapped.new(old)

  elsif old == :enum
    if add.kind_of?(Array)
      self.enum(add)
    else
      self.enum(info, add)
    end

  else
    FFI.find_type(old)
  end
end