Method: Numeric#step
- Defined in:
- numeric.c
#step(to = nil, by = 1) {|n| ... } ⇒ self #step(to = nil, by = 1) ⇒ Object #step(to = nil, by: 1) {|n| ... } ⇒ self #step(to = nil, by: 1) ⇒ Object #step(by: 1, to: ) {|n| ... } ⇒ self #step(by: 1, to: ) ⇒ Object #step(by: , to: nil) {|n| ... } ⇒ self #step(by: , to: nil) ⇒ Object
Generates a sequence of numbers; with a block given, traverses the sequence.
Of the Core and Standard Library classes, Integer, Float, and Rational use this implementation.
A quick example:
squares = []
1.step(by: 2, to: 10) {|i| squares.push(i*i) }
squares # => [1, 9, 25, 49, 81]
The generated sequence:
-
Begins with
self. -
Continues at intervals of
by(which may not be zero). -
Ends with the last number that is within or equal to
to;
that is, less than or equal to +to+ if +by+ is positive,
greater than or equal to +to+ if +by+ is negative.
If +to+ is +nil+, the sequence is of infinite length.
If a block is given, calls the block with each number in the sequence; returns self. If no block is given, returns an Enumerator::ArithmeticSequence.
Keyword Arguments
With keyword arguments by and to, their values (or defaults) determine the step and limit:
# Both keywords given.
squares = []
4.step(by: 2, to: 10) {|i| squares.push(i*i) } # => 4
squares # => [16, 36, 64, 100]
cubes = []
3.step(by: -1.5, to: -3) {|i| cubes.push(i*i*i) } # => 3
cubes # => [27.0, 3.375, 0.0, -3.375, -27.0]
squares = []
1.2.step(by: 0.2, to: 2.0) {|f| squares.push(f*f) }
squares # => [1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]
squares = []
Rational(6/5).step(by: 0.2, to: 2.0) {|r| squares.push(r*r) }
squares # => [1.0, 1.44, 1.9599999999999997, 2.5600000000000005, 3.24, 4.0]
# Only keyword to given.
squares = []
4.step(to: 10) {|i| squares.push(i*i) } # => 4
squares # => [16, 25, 36, 49, 64, 81, 100]
# Only by given.
# Only keyword by given
squares = []
4.step(by:2) {|i| squares.push(i*i); break if i > 10 }
squares # => [16, 36, 64, 100, 144]
# No block given.
e = 3.step(by: -1.5, to: -3) # => (3.step(by: -1.5, to: -3))
e.class # => Enumerator::ArithmeticSequence
Positional Arguments
With optional positional arguments to and by, their values (or defaults) determine the step and limit:
squares = []
4.step(10, 2) {|i| squares.push(i*i) } # => 4
squares # => [16, 36, 64, 100]
squares = []
4.step(10) {|i| squares.push(i*i) }
squares # => [16, 25, 36, 49, 64, 81, 100]
squares = []
4.step {|i| squares.push(i*i); break if i > 10 } # => nil
squares # => [16, 25, 36, 49, 64, 81, 100, 121]
Implementation Notes
If all the arguments are integers, the loop operates using an integer counter.
If any of the arguments are floating point numbers, all are converted to floats, and the loop is executed floor(n + n*Float::EPSILON) + 1 times, where n = (limit - self)/step.
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 |
# File 'numeric.c', line 3094
static VALUE
num_step(int argc, VALUE *argv, VALUE from)
{
VALUE to, step;
int desc, inf;
if (!rb_block_given_p()) {
VALUE by = Qundef;
num_step_extract_args(argc, argv, &to, &step, &by);
if (!UNDEF_P(by)) {
step = by;
}
if (NIL_P(step)) {
step = INT2FIX(1);
}
else if (rb_equal(step, INT2FIX(0))) {
rb_raise(rb_eArgError, "step can't be 0");
}
if ((NIL_P(to) || rb_obj_is_kind_of(to, rb_cNumeric)) &&
rb_obj_is_kind_of(step, rb_cNumeric)) {
return rb_arith_seq_new(from, ID2SYM(rb_frame_this_func()), argc, argv,
num_step_size, from, to, step, FALSE);
}
return SIZED_ENUMERATOR_KW(from, 2, ((VALUE [2]){to, step}), num_step_size, FALSE);
}
desc = num_step_scan_args(argc, argv, &to, &step, TRUE, FALSE);
if (rb_equal(step, INT2FIX(0))) {
inf = 1;
}
else if (RB_FLOAT_TYPE_P(to)) {
double f = RFLOAT_VALUE(to);
inf = isinf(f) && (signbit(f) ? desc : !desc);
}
else inf = 0;
if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) {
long i = FIX2LONG(from);
long diff = FIX2LONG(step);
if (inf) {
for (;; i += diff)
rb_yield(LONG2FIX(i));
}
else {
long end = FIX2LONG(to);
if (desc) {
for (; i >= end; i += diff)
rb_yield(LONG2FIX(i));
}
else {
for (; i <= end; i += diff)
rb_yield(LONG2FIX(i));
}
}
}
else if (!ruby_float_step(from, to, step, FALSE, FALSE)) {
VALUE i = from;
if (inf) {
for (;; i = rb_funcall(i, '+', 1, step))
rb_yield(i);
}
else {
ID cmp = desc ? '<' : '>';
for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step))
rb_yield(i);
}
}
return from;
}
|