Class: Statsample::Factor::PrincipalAxis

Inherits:
Object
  • Object
show all
Includes:
DirtyMemoize, Summarizable
Defined in:
lib/statsample/factor/principalaxis.rb

Overview

Principal Axis Analysis for a covariance or correlation matrix.

For PCA, use Statsample::Factor::PCA

Usage:

require 'statsample'
a = Daru::Vector.new([2.5, 0.5, 2.2, 1.9, 3.1, 2.3, 2.0, 1.0, 1.5, 1.1])
b = Daru::Vector.new([2.4,0.7,2.9,2.2,3.0,2.7,1.6,1.1,1.6,0.9])
ds= Daru::DataFrame.new({:a => a,:b => b})
cor_matrix=Statsample::Bivariate.correlation_matrix(ds)
pa=Statsample::Factor::PrincipalAxis.new(cor_matrix)
pa.iterate(1)
pa.m
=> 1
pca.component_matrix
=> GSL::Matrix
[  9.622e-01 
   9.622e-01 ]
pca.communalities
=> [0.962964636346122, 0.962964636346122]

References:

Constant Summary collapse

DELTA =

Minimum difference between succesive iterations on sum of communalities

1e-3
MAX_ITERATIONS =

Maximum number of iterations

25

Instance Attribute Summary collapse

Class Method Summary collapse

Instance Method Summary collapse

Methods included from Summarizable

#summary

Constructor Details

#initialize(matrix, opts = Hash.new) ⇒ PrincipalAxis

Returns a new instance of PrincipalAxis


65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# File 'lib/statsample/factor/principalaxis.rb', line 65

def initialize(matrix, opts=Hash.new)
  @matrix=matrix
  if @matrix.respond_to? :fields
    @fields=@matrix.fields
  else
    @fields=@matrix.row_size.times.map {|i| _("Variable %d") % (i+1)}
  end
  @n_variables=@matrix.row_size
  @name=""
  @m=nil
  @initial_eigenvalues=nil
  @initial_communalities=nil
  @component_matrix=nil
  @delta=DELTA
  @smc=true
  @max_iterations=MAX_ITERATIONS
  opts.each{|k,v|
    self.send("#{k}=",v) if self.respond_to? k
  }
  if @matrix.respond_to? :fields
    @variables_names=@matrix.fields
  else
    @variables_names=@n_variables.times.map {|i| "V#{i+1}"}
  end
  if @m.nil?
    pca=PCA.new(::Matrix.rows(@matrix.to_a))
    @m=pca.m
  end
  
  @clean=true
end

Instance Attribute Details

#eigenvaluesObject (readonly)

Eigenvalues of factor analysis


58
59
60
# File 'lib/statsample/factor/principalaxis.rb', line 58

def eigenvalues
  @eigenvalues
end

#epsilonObject

Tolerance for iterations


49
50
51
# File 'lib/statsample/factor/principalaxis.rb', line 49

def epsilon
  @epsilon
end

#initial_eigenvaluesObject (readonly)

Initial eigenvalues


46
47
48
# File 'lib/statsample/factor/principalaxis.rb', line 46

def initial_eigenvalues
  @initial_eigenvalues
end

#iterationsObject (readonly)

Number of iterations required to converge


43
44
45
# File 'lib/statsample/factor/principalaxis.rb', line 43

def iterations
  @iterations
end

#mObject

Number of factors. Set by default to the number of factors with eigenvalues > 1 (Kaiser criterion).

Warning: Kaiser criterion overfactors! Give yourself some time and use Horn's Parallel Analysis.


40
41
42
# File 'lib/statsample/factor/principalaxis.rb', line 40

def m
  @m
end

#max_iterationsObject

Maximum number of iterations


55
56
57
# File 'lib/statsample/factor/principalaxis.rb', line 55

def max_iterations
  @max_iterations
end

#nameObject

Name of analysis


32
33
34
# File 'lib/statsample/factor/principalaxis.rb', line 32

def name
  @name
end

#smcObject

Use SMC(squared multiple correlations) as diagonal. If false, use 1


52
53
54
# File 'lib/statsample/factor/principalaxis.rb', line 52

def smc
  @smc
end

Class Method Details

.separate_matrices(matrix, y) ⇒ Object

Returns two matrixes from a correlation matrix with regressors correlation matrix and criteria xy matrix.


178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# File 'lib/statsample/factor/principalaxis.rb', line 178

def self.separate_matrices(matrix, y)
  ac=[]
  matrix.column_size.times do |i|
    ac.push(matrix[y,i]) if i!=y
  end
  rxy=Matrix.columns([ac])
  rows=[]
  matrix.row_size.times do |i|
    if i!=y
      row=[]
      matrix.row_size.times do |j|
        row.push(matrix[i,j]) if j!=y
      end
      rows.push(row)
    end
  end
  rxx=Matrix.rows(rows)
  [rxx,rxy]
end

Instance Method Details

#communalities(m = nil) ⇒ Object

Communality for all variables given m factors


97
98
99
100
101
102
103
# File 'lib/statsample/factor/principalaxis.rb', line 97

def communalities(m=nil)
  if m!=@m or @clean
    iterate(m)
    raise "Can't calculate comunality" if @communalities.nil?
  end
  @communalities
end

#component_matrix(m = nil) ⇒ Object

Component matrix for m factors


105
106
107
108
109
110
# File 'lib/statsample/factor/principalaxis.rb', line 105

def component_matrix(m=nil)
  if m!=@m  or @clean
    iterate(m)
  end
  @component_matrix
end

#initial_communalitiesObject


154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# File 'lib/statsample/factor/principalaxis.rb', line 154

def initial_communalities
  if @initial_communalities.nil?
    
    if @smc
      # Based on O'Connors(2000)
      @initial_communalities=@matrix.inverse.diagonal.map{|i| 1-(1.quo(i))}
=begin
    @[email protected]_size.times.collect {|i|
      rxx , rxy = PrincipalAxis.separate_matrices(@matrix,i)
      matrix=(rxy.t*rxx.inverse*rxy)
      matrix[0,0]
    }
=end
    else
      @initial_communalities=[1.0]*@matrix.column_size
    end
  end      
  @initial_communalities
end

#iterate(m = nil) ⇒ Object Also known as: compute

Iterate to find the factors


112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# File 'lib/statsample/factor/principalaxis.rb', line 112

def iterate(m=nil)
  @clean=false
  m||=@m
  @m=m
  t = @max_iterations
  work_matrix=@matrix.to_a
  
  prev_com=initial_communalities
  
  pca=PCA.new(::Matrix.rows(work_matrix))
  @initial_eigenvalues=pca.eigenvalues
  prev_sum=prev_com.inject(0) {|ac,v| ac+v}
  @iterations=0
  t.times do |i|
    "#{@name}: Iteration #{i}" if $DEBUG
    @iterations+=1
    prev_com.each_with_index{|v,it|
      work_matrix[it][it]=v
    }
    pca=PCA.new(::Matrix.rows(work_matrix))
    @communalities=pca.communalities(m)
    @eigenvalues=pca.eigenvalues
    com_sum = @communalities.inject(0) {|ac,v| ac+v}
    #jump=true
    
    break if (com_sum-prev_sum).abs < @delta
    @communalities.each_with_index do |v2,i2|
      raise "Variable #{i2} with communality > 1" if v2>1.0
    end
    prev_sum=com_sum
    prev_com=@communalities
    
  end
  @component_matrix=pca.component_matrix(m)
  @component_matrix.extend CovariateMatrix
  @component_matrix.name=_("Factor Matrix")
  @component_matrix.fields_x = @variables_names
  @component_matrix.fields_y = m.times.map {|i| "factor_#{i+1}"}
  
end

#report_building(generator) ⇒ Object


197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# File 'lib/statsample/factor/principalaxis.rb', line 197

def report_building(generator)
  iterate if @clean
  generator.section(:name=>@name) do |s|
    s.text _("Number of factors: %d") % m
    s.text _("Iterations: %d") % @iterations
    s.table(:name=>_("Communalities"), :header=>[_("Variable"),_("Initial"),_("Extraction")]) do |t|
      communalities(m).each_with_index {|com,i|
        t.row([@fields[i], sprintf("%0.4f", initial_communalities[i]), sprintf("%0.3f", com)])
      }
    end
    s.table(:name=>_("Total Variance"), :header=>[_("Factor"), _("I.E.Total"), _("I.E. %"), _("I.E.Cum. %"),
    _("S.L.Total"), _("S.L. %"), _("S.L.Cum. %")
      ]) do |t|
    ac_eigen,ac_i_eigen=0,0
      @initial_eigenvalues.each_with_index {|eigenvalue,i|
        ac_i_eigen+=eigenvalue
        ac_eigen+=@eigenvalues[i]
        new_row=[
        _("Factor %d") % (i+1), 
        sprintf("%0.3f",eigenvalue),
        sprintf("%0.3f%%", eigenvalue*100.quo(@n_variables)),
        sprintf("%0.3f",ac_i_eigen*100.quo(@n_variables))
        ]
        if i<@m
          new_row.concat [
            sprintf("%0.3f", @eigenvalues[i]),
            sprintf("%0.3f%%", @eigenvalues[i]*100.quo(@n_variables)),
            sprintf("%0.3f",ac_eigen*100.quo(@n_variables))              
          ]
        else
          new_row.concat ["","",""]
        end
        
        t.row new_row
      }
    end
    s.parse_element(component_matrix)
  end
end