Class: Integration

Inherits:
Object
  • Object
show all
Defined in:
lib/integration.rb,
lib/integration/version.rb

Overview

Diverse integration methods Use Integration.integrate as wrapper to direct access to methods

Method API

Constant Summary collapse

MInfinity =

Minus Infinity

:minfinity
Infinity =

Infinity

:infinity
RUBY_METHOD =

Methods available on pure ruby

[:rectangle,:trapezoid,:simpson, :adaptive_quadrature , :gauss, :romberg, :monte_carlo, :gauss_kronrod, :simpson3by8, :boole, :open_trapezoid, :milne]
GSL_METHOD =

Methods available with Ruby/GSL library

[:qng, :qag]
VERSION =
'0.1.3'

Class Method Summary collapse

Class Method Details

.adaptive_quadrature(a, b, tolerance) ⇒ Object

Adaptive Quadrature Calls the Simpson's rule recursively on subintervals in case the error exceeds the desired tolerance tolerance is the desired tolerance of error



150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# File 'lib/integration.rb', line 150

def adaptive_quadrature(a, b, tolerance)
  h = (b.to_f - a) / 2
  fa = yield(a)
  fc = yield(a + h)
  fb = yield(b)
  s = h * (fa + (4 * fc) + fb) / 3
  helper = Proc.new { |a, b, fa, fb, fc, h, s, level|
    if level < 1/tolerance.to_f
      fd = yield(a + (h / 2))
      fe = yield(a + (3 * (h / 2)))
      s1 = h * (fa + (4.0 * fd) + fc) / 6
      s2 = h * (fc + (4.0 * fe) + fb) / 6
      if ((s1 + s2) - s).abs <= tolerance
        s1 + s2
      else
        helper.call(a, a + h, fa, fc, fd, h / 2, s1, level + 1) +
        helper.call(a + h, b, fc, fb, fe, h / 2, s2, level + 1)
      end
    else
      raise "Integral did not converge"
    end
  }
  return helper.call(a, b, fa, fb, fc, h, s, 1)
end

.boole(t1, t2, n, &f) ⇒ Object

Boole's Rule n implies number of subdivisions Source: Weisstein, Eric W. “Boole's Rule.” From MathWorld—A Wolfram Web Resource



110
111
112
113
114
115
116
117
# File 'lib/integration.rb', line 110

def boole(t1, t2, n, &f)
  d = (t2-t1) / n.to_f
  ac = 0
  (0..n-1).each do |i|
    ac+=(d/90.0)*(7*f[t1+i*d]+32*f[t1+i*d+d/4]+12*f[t1+i*d+d/2]+32*f[t1+i*d+3*d/4]+7*f[t1+(i+1)*d])
  end
  ac
end

.create_has_library(library) ⇒ Object

Create a method 'has_<library>' on Module which require a library and return true or false according to success of failure



42
43
44
45
46
47
48
49
50
51
52
53
54
55
# File 'lib/integration.rb', line 42

def create_has_library(library) #:nodoc:
  define_singleton_method("has_#{library}?") do
    cv="@@#{library}"
    if !class_variable_defined? cv
      begin
        require library.to_s
        class_variable_set(cv, true)
      rescue LoadError
        class_variable_set(cv, false)
      end
    end
    class_variable_get(cv)
  end
end

.gauss(t1, t2, n) ⇒ Object

Gaussian Quadrature n-point Gaussian quadrature rule gives an exact result for polynomials of degree 2n − 1 or less



177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# File 'lib/integration.rb', line 177

def gauss(t1, t2, n)
  case n
    when 1
      z = [0.0]
      w = [2.0]
    when 2
      z = [-0.57735026919, 0.57735026919]
      w = [1.0, 1.0]
    when 3
      z = [-0.774596669241, 0.0, 0.774596669241]
      w = [0.555555555556, 0.888888888889, 0.555555555556]
    when 4
      z = [-0.861136311594, -0.339981043585, 0.339981043585, 0.861136311594]
      w = [0.347854845137, 0.652145154863, 0.652145154863, 0.347854845137]
    when 5
      z = [-0.906179845939, -0.538469310106, 0.0, 0.538469310106, 0.906179845939]
      w = [0.236926885056, 0.478628670499, 0.568888888889, 0.478628670499, 0.236926885056]
    when 6
      z = [-0.932469514203, -0.661209386466, -0.238619186083, 0.238619186083, 0.661209386466, 0.932469514203]
      w = [0.171324492379, 0.360761573048, 0.467913934573, 0.467913934573, 0.360761573048, 0.171324492379]
    when 7
      z = [-0.949107912343, -0.741531185599, -0.405845151377, 0.0, 0.405845151377, 0.741531185599, 0.949107912343]
      w = [0.129484966169, 0.279705391489, 0.381830050505, 0.417959183673, 0.381830050505, 0.279705391489, 0.129484966169]
    when 8
      z = [-0.960289856498, -0.796666477414, -0.525532409916, -0.183434642496, 0.183434642496, 0.525532409916, 0.796666477414, 0.960289856498]
      w = [0.10122853629, 0.222381034453, 0.313706645878, 0.362683783378, 0.362683783378, 0.313706645878, 0.222381034453, 0.10122853629]
    when 9
      z = [-0.968160239508, -0.836031107327, -0.613371432701, -0.324253423404, 0.0, 0.324253423404, 0.613371432701, 0.836031107327, 0.968160239508]
      w = [0.0812743883616, 0.180648160695, 0.260610696403, 0.31234707704, 0.330239355001, 0.31234707704, 0.260610696403, 0.180648160695, 0.0812743883616]
    when 10
      z = [-0.973906528517, -0.865063366689, -0.679409568299, -0.433395394129, -0.148874338982, 0.148874338982, 0.433395394129, 0.679409568299, 0.865063366689, 0.973906528517]
      w = [0.0666713443087, 0.149451349151, 0.219086362516, 0.26926671931, 0.295524224715, 0.295524224715, 0.26926671931, 0.219086362516, 0.149451349151, 0.0666713443087]
    else
      raise "Invalid number of spaced abscissas #{n}, should be 1-10"
  end

  sum = 0
  (0...n).each do |i|
    t = ((t1.to_f + t2) / 2.0) + (((t2 - t1) / 2.0) * z[i])
    sum += w[i] * yield(t)
  end
  return ((t2 - t1) / 2.0) * sum
end

.gauss_kronrod(t1, t2, n, points) ⇒ Object

Gauss Kronrod Rule: Provides a 3n+1 order estimate while re-using the function values of a lower-order(n order) estimate Source: “Gauss–Kronrod quadrature formula”, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4



225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# File 'lib/integration.rb', line 225

def gauss_kronrod(t1,t2,n,points)
  #g7k15
  case points
    when 15

      z = [-0.9914553711208126, -0.9491079123427585, -0.8648644233597691,
           -0.7415311855993945, -0.5860872354676911, -0.4058451513773972,
           -0.20778495500789848, 0.0, 0.20778495500789848,
           0.4058451513773972, 0.5860872354676911, 0.7415311855993945,
           0.8648644233597691, 0.9491079123427585, 0.9914553711208126]

      w = [0.022935322010529224, 0.06309209262997856, 0.10479001032225019,
           0.14065325971552592, 0.1690047266392679, 0.19035057806478542,
           0.20443294007529889, 0.20948214108472782, 0.20443294007529889,
           0.19035057806478542, 0.1690047266392679, 0.14065325971552592,
           0.10479001032225019, 0.06309209262997856, 0.022935322010529224]

    when 21
      #g10k21

      z = [-0.9956571630258081, -0.9739065285171717, -0.9301574913557082,
           -0.8650633666889845, -0.7808177265864169, -0.6794095682990244,
           -0.5627571346686047, -0.4333953941292472, -0.2943928627014602,
           -0.14887433898163122, 0.0, 0.14887433898163122,
           0.2943928627014602, 0.4333953941292472, 0.5627571346686047,
           0.6794095682990244, 0.7808177265864169, 0.8650633666889845,
           0.9301574913557082, 0.9739065285171717, 0.9956571630258081]

      w = [0.011694638867371874, 0.032558162307964725,
           0.054755896574351995, 0.07503967481091996, 0.0931254545836976,
           0.10938715880229764, 0.12349197626206584, 0.13470921731147334,
           0.14277593857706009, 0.14773910490133849, 0.1494455540029169,
           0.14773910490133849, 0.14277593857706009, 0.13470921731147334,
           0.12349197626206584, 0.10938715880229764, 0.0931254545836976,
           0.07503967481091996, 0.054755896574351995, 0.032558162307964725,
           0.011694638867371874]

    when 31
      #g15k31

      z = [-0.9980022986933971, -0.9879925180204854, -0.9677390756791391,
           -0.937273392400706, -0.8972645323440819, -0.8482065834104272,
           -0.790418501442466, -0.7244177313601701, -0.650996741297417,
           -0.5709721726085388, -0.4850818636402397, -0.3941513470775634,
           -0.29918000715316884, -0.20119409399743451, -0.1011420669187175,
           0.0, 0.1011420669187175, 0.20119409399743451,
           0.29918000715316884, 0.3941513470775634, 0.4850818636402397,
           0.5709721726085388, 0.650996741297417, 0.7244177313601701,
           0.790418501442466, 0.8482065834104272, 0.8972645323440819,
           0.937273392400706, 0.9677390756791391, 0.9879925180204854,
           0.9980022986933971]

      w = [0.005377479872923349, 0.015007947329316122, 0.02546084732671532,
           0.03534636079137585, 0.04458975132476488, 0.05348152469092809,
           0.06200956780067064, 0.06985412131872826, 0.07684968075772038,
           0.08308050282313302, 0.08856444305621176, 0.09312659817082532,
           0.09664272698362368, 0.09917359872179196, 0.10076984552387559,
           0.10133000701479154, 0.10076984552387559, 0.09917359872179196,
           0.09664272698362368, 0.09312659817082532, 0.08856444305621176,
           0.08308050282313302, 0.07684968075772038, 0.06985412131872826,
           0.06200956780067064, 0.05348152469092809, 0.04458975132476488,
           0.03534636079137585, 0.02546084732671532, 0.015007947329316122,
           0.005377479872923349]

    when 41
      #g20k41

      z = [-0.9988590315882777, -0.9931285991850949, -0.9815078774502503,
           -0.9639719272779138, -0.9408226338317548, -0.912234428251326,
           -0.878276811252282, -0.8391169718222188, -0.7950414288375512,
           -0.7463319064601508, -0.6932376563347514, -0.636053680726515,
           -0.5751404468197103, -0.5108670019508271, -0.4435931752387251,
           -0.37370608871541955, -0.301627868114913, -0.22778585114164507,
           -0.15260546524092267, -0.07652652113349734, 0.0,
           0.07652652113349734, 0.15260546524092267, 0.22778585114164507,
           0.301627868114913, 0.37370608871541955, 0.4435931752387251,
           0.5108670019508271, 0.5751404468197103, 0.636053680726515,
           0.6932376563347514, 0.7463319064601508, 0.7950414288375512,
           0.8391169718222188, 0.878276811252282, 0.912234428251326,
           0.9408226338317548, 0.9639719272779138, 0.9815078774502503,
           0.9931285991850949, 0.9988590315882777]

      w = [0.0030735837185205317, 0.008600269855642943,
           0.014626169256971253, 0.020388373461266523, 0.02588213360495116,
           0.0312873067770328, 0.036600169758200796, 0.041668873327973685,
           0.04643482186749767, 0.05094457392372869, 0.05519510534828599,
           0.05911140088063957, 0.06265323755478117, 0.06583459713361842,
           0.06864867292852161, 0.07105442355344407, 0.07303069033278667,
           0.07458287540049918, 0.07570449768455667, 0.07637786767208074,
           0.07660071191799965, 0.07637786767208074, 0.07570449768455667,
           0.07458287540049918, 0.07303069033278667, 0.07105442355344407,
           0.06864867292852161, 0.06583459713361842, 0.06265323755478117,
           0.05911140088063957, 0.05519510534828599, 0.05094457392372869,
           0.04643482186749767, 0.041668873327973685, 0.036600169758200796,
           0.0312873067770328, 0.02588213360495116, 0.020388373461266523,
           0.014626169256971253, 0.008600269855642943,
           0.0030735837185205317]

    when 61
      #g30k61

      z = [-0.9994844100504906, -0.9968934840746495, -0.9916309968704046,
           -0.9836681232797472, -0.9731163225011262, -0.9600218649683075,
           -0.94437444474856, -0.9262000474292743, -0.9055733076999078,
           -0.8825605357920527, -0.8572052335460612, -0.8295657623827684,
           -0.799727835821839, -0.7677774321048262, -0.7337900624532268,
           -0.6978504947933158, -0.6600610641266269, -0.6205261829892429,
           -0.5793452358263617, -0.5366241481420199, -0.49248046786177857,
           -0.44703376953808915, -0.4004012548303944, -0.3527047255308781,
           -0.30407320227362505, -0.25463692616788985,
           -0.20452511668230988, -0.15386991360858354,
           -0.10280693796673702, -0.0514718425553177, 0.0,
           0.0514718425553177, 0.10280693796673702, 0.15386991360858354,
           0.20452511668230988, 0.25463692616788985, 0.30407320227362505,
           0.3527047255308781, 0.4004012548303944, 0.44703376953808915,
           0.49248046786177857, 0.5366241481420199, 0.5793452358263617,
           0.6205261829892429, 0.6600610641266269, 0.6978504947933158,
           0.7337900624532268, 0.7677774321048262, 0.799727835821839,
           0.8295657623827684, 0.8572052335460612, 0.8825605357920527,
           0.9055733076999078, 0.9262000474292743, 0.94437444474856,
           0.9600218649683075, 0.9731163225011262, 0.9836681232797472,
           0.9916309968704046, 0.9968934840746495, 0.9994844100504906]

      w = [0.0013890136986770077, 0.003890461127099884,
           0.0066307039159312926, 0.009273279659517764,
           0.011823015253496341, 0.014369729507045804, 0.01692088918905327,
           0.019414141193942382, 0.021828035821609193, 0.0241911620780806,
           0.0265099548823331, 0.02875404876504129, 0.030907257562387762,
           0.03298144705748372, 0.034979338028060025, 0.03688236465182123,
           0.038678945624727595, 0.040374538951535956,
           0.041969810215164244, 0.04345253970135607, 0.04481480013316266,
           0.04605923827100699, 0.04718554656929915, 0.04818586175708713,
           0.04905543455502978, 0.04979568342707421, 0.05040592140278235,
           0.05088179589874961, 0.051221547849258774, 0.05142612853745902,
           0.05149472942945157, 0.05142612853745902, 0.051221547849258774,
           0.05088179589874961, 0.05040592140278235, 0.04979568342707421,
           0.04905543455502978, 0.04818586175708713, 0.04718554656929915,
           0.04605923827100699, 0.04481480013316266, 0.04345253970135607,
           0.041969810215164244, 0.040374538951535956,
           0.038678945624727595, 0.03688236465182123, 0.034979338028060025,
           0.03298144705748372, 0.030907257562387762, 0.02875404876504129,
           0.0265099548823331, 0.0241911620780806, 0.021828035821609193,
           0.019414141193942382, 0.01692088918905327, 0.014369729507045804,
           0.011823015253496341, 0.009273279659517764,
           0.0066307039159312926, 0.003890461127099884,
           0.0013890136986770077]

    else # using 15 point quadrature

      n = 15

      z = [-0.9914553711208126, -0.9491079123427585, -0.8648644233597691,
           -0.7415311855993945, -0.5860872354676911, -0.4058451513773972,
           -0.20778495500789848, 0.0, 0.20778495500789848,
           0.4058451513773972, 0.5860872354676911, 0.7415311855993945,
           0.8648644233597691, 0.9491079123427585, 0.9914553711208126]

      w = [0.022935322010529224, 0.06309209262997856, 0.10479001032225019,
           0.14065325971552592, 0.1690047266392679, 0.19035057806478542,
           0.20443294007529889, 0.20948214108472782, 0.20443294007529889,
           0.19035057806478542, 0.1690047266392679, 0.14065325971552592,
           0.10479001032225019, 0.06309209262997856, 0.022935322010529224]

  end

  sum = 0
  (0...n).each do |i|
    t = ((t1.to_f + t2) / 2.0) + (((t2 - t1) / 2.0) * z[i])
    sum += w[i] * yield(t)
  end

  ((t2 - t1) / 2.0) * sum
end

.integrate(t1, t2, options = Hash.new, &f) ⇒ Object

Get the integral for a function f, with bounds t1 and t2 given a hash of options. If Ruby/GSL is available, you could use Integration::Minfinity and Integration::Infinity as bounds. Method Options are

:tolerance

Maximum difference between real and calculated integral. Default: 1e-10

:initial_step

Initial number of subdivitions

:step

Subdivitions increment on each iteration

:method

Integration method.

Methods are

:rectangle

for [:initial_step+:step*iteration] quadrilateral subdivisions

:trapezoid

for [:initial_step+:step*iteration] trapezoid-al subdivisions

:simpson

for [:initial_step+:step*iteration] parabolic subdivisions

:adaptive_quadrature

for recursive appoximations until error [tolerance]

:gauss
:initial_step+:step*iteration

weighted subdivisons using translated -1 -> +1 endpoints

:romberg

extrapolation of recursion approximation until error < [tolerance]

:monte_carlo

make [:initial_step+:step*iteration] random samples, and check for above/below curve

:qng

GSL QNG non-adaptive Gauss-Kronrod integration

:qag

GSL QAG adaptive integration, with support for infinite bounds



472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
# File 'lib/integration.rb', line 472

def integrate(t1,t2,options=Hash.new, &f)
  inf_bounds=(is_infinite?(t1) or is_infinite?(t2))
  raise "No function passed" unless block_given?
  raise "Non-numeric bounds" unless ((t1.is_a? Numeric) and (t2.is_a? Numeric)) or inf_bounds
  if(inf_bounds)
    lower_bound=t1
    upper_bound=t2
    options[:method]=:qag if options[:method].nil?
  else
    lower_bound = [t1, t2].min
    upper_bound = [t1, t2].max
  end
  def_method=(has_gsl?) ? :qag : :simpson
  default_opts={:tolerance=>1e-10, :initial_step=>16, :step=>16, :method=>def_method}
  options=default_opts.merge(options)
  if RUBY_METHOD.include? options[:method]
    raise "Ruby methods doesn't support infinity bounds" if inf_bounds
    integrate_ruby(lower_bound,upper_bound,options,&f)
  elsif GSL_METHOD.include? options[:method]
    integrate_gsl(lower_bound,upper_bound,options,&f)
  else
    raise "Unknown integration method \"#{options[:method]}\""
  end
end

.integrate_gsl(lower_bound, upper_bound, options, &f) ⇒ Object

TODO: Document method



498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
# File 'lib/integration.rb', line 498

def integrate_gsl(lower_bound,upper_bound,options,&f)

  f = GSL::Function.alloc(&f)
  method=options[:method]
  tolerance=options[:tolerance]

  if(method==:qag)
    w = GSL::Integration::Workspace.alloc()
    if(is_infinite?(lower_bound) and  is_infinite?(upper_bound))
      #puts "ambos"
      val=f.qagi([tolerance,0.0], 1000, w)
    elsif is_infinite?(lower_bound)
      #puts "inferior #{upper_bound}"
      val=f.qagil(upper_bound, [tolerance, 0], w)
    elsif is_infinite?(upper_bound)
      #puts "superior"
      val=f.qagiu(lower_bound, [tolerance, 0], w)
    else

      val=f.qag([lower_bound,upper_bound],[tolerance,0.0], GSL::Integration::GAUSS61, w)
    end
  elsif(method==:qng)
    val=f.qng([lower_bound, upper_bound], [tolerance, 0.0])
  else
    raise "Unknown integration method \"#{method}\""
  end
  val[0]
end

.integrate_ruby(lower_bound, upper_bound, options, &f) ⇒ Object



527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
# File 'lib/integration.rb', line 527

def integrate_ruby(lower_bound,upper_bound,options,&f)
  method=options[:method]
  tolerance=options[:tolerance]
  initial_step=options[:initial_step]
  step=options[:step]
  points = options[:points]
  begin
    method_obj = Integration.method(method.to_s.downcase)
  rescue
    raise "Unknown integration method \"#{method}\""
  end
  current_step=initial_step

  if(method==:adaptive_quadrature or method==:romberg or method==:gauss or method== :gauss_kronrod)
    if(method==:gauss )
      initial_step=10 if initial_step>10
      tolerance = initial_step
      method_obj.call(lower_bound, upper_bound, tolerance, &f)
    elsif (method==:gauss_kronrod)
      initial_step=10 if initial_step>10
      tolerance=initial_step
      points = points if points != nil
      method_obj.call(lower_bound, upper_bound, tolerance, points, &f)
    else
      method_obj.call(lower_bound, upper_bound, tolerance, &f)
    end
  else
    #puts "iniciando"
    value=method_obj.call(lower_bound, upper_bound, current_step, &f)
    previous=value+(tolerance*2)
    diffs=[]
    while((previous-value).abs > tolerance) do
      #puts("Valor:#{value}, paso:#{current_step}")
      #puts(current_step)
      diffs.push((previous-value).abs)
      #diffs.push value
      current_step+=step
      previous=value
      #puts "Llamando al metodo"

      value=method_obj.call(lower_bound, upper_bound, current_step, &f)
    end

    value
  end
end

.is_infinite?(v) ⇒ Boolean

Returns:

  • (Boolean)


442
443
444
# File 'lib/integration.rb', line 442

def is_infinite?(v)
  v == Infinity || v == MInfinity
end

.milne(t1, t2, n, &f) ⇒ Object

Milne's Method n implies number of subdivisions Source: Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 896-897, 1972.



137
138
139
140
141
142
143
144
# File 'lib/integration.rb', line 137

def milne(t1, t2, n, &f)
  d = (t2-t1) / n.to_f
  ac = 0
  (0..n-1).each do |i|
    ac+=(d/3.0)*(2*f[t1+i*d+d/4]-f[t1+i*d+d/2]+2*f[t1+i*d+3*d/4])
  end
  ac
end

.monte_carlo(t1, t2, n) ⇒ Object

Monte Carlo: Uses a non deterministic(probabilistic) approach for calculation of definite integrals Estimates the integral by randomly choosing points in a set and then calculating the number of points that fall in the desired area



425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
# File 'lib/integration.rb', line 425

def monte_carlo(t1, t2, n)
  width = (t2 - t1).to_f
  height = nil
  vals = []
  n.times do
    t = t1 + (rand() * width)
    ft = yield(t)
    height = ft if height.nil? || ft > height
    vals << ft
  end
  area_ratio = 0
  vals.each do |ft|
    area_ratio += (ft / height.to_f) / n.to_f
  end
  return (width * height) * area_ratio
end

.open_trapezoid(t1, t2, n, &f) ⇒ Object

Open Trapezoid method n implies number of subdivisions Values computed at mid point and end point instead of starting points



122
123
124
125
126
127
128
129
# File 'lib/integration.rb', line 122

def open_trapezoid(t1, t2, n, &f)
  d = (t2-t1) / n.to_f
  ac = 0
  (0..n-1).each do |i|
    ac+=(d/2.0)*(f[t1+i*d+d/3]+f[t1+i*d+2*d/3])
  end
  ac
end

.rectangle(t1, t2, n, &f) ⇒ Object Also known as: midpoint

Rectangle method n implies number of subdivisions Source:

* Ayres : Outline of calculus


60
61
62
63
64
65
# File 'lib/integration.rb', line 60

def rectangle(t1, t2, n, &f)
  d=(t2-t1) / n.to_f
  n.times.inject(0) {|ac,i|
    ac+f[t1+d*(i+0.5)]
  }*d
end

.romberg(a, b, tolerance, max_iter = 20) ⇒ Object

Romberg Method: It is obtained by applying extrapolation techniques repeatedly on the trapezoidal rule



401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
# File 'lib/integration.rb', line 401

def romberg(a, b, tolerance,max_iter=20)
  # NOTE one-based arrays are used for convenience
  h = b.to_f - a
  m = 1
  close = 1
  r = [[(h / 2) * (yield(a) + yield(b))]]
  j = 0
  hn=lambda {|n| h/(2**n)}
  while j <= max_iter && tolerance < close
    j+=1
    r.push((j+1).times.map{[]})
    ul=2**(j-1)
    r[j][0]=r[j-1][0] / 2.0 + hn[j] * (1..ul).inject(0) {|ac,k| ac+yield(a + (2*k-1)* hn[j])}
    (1..j).each do |k|
      r[j][k] = ( (4**k) * r[j][k-1] - r[j-1][k-1]) / ((4**k)-1)
    end
    close = (r[j][j] - r[j-1][j-1])
  end
  r[j][j]
end

.simpson(t1, t2, n, &f) ⇒ Object

Simpson's rule n implies number of subdivisions Source:

* Ayres : Outline of calculus


83
84
85
86
87
88
89
90
91
# File 'lib/integration.rb', line 83

def simpson(t1, t2, n, &f)
  n += 1 unless n % 2 == 0
  d=(t2-t1) / n.to_f
  out= (d / 3.0)*(f[t1.to_f].to_f+
  ((1..(n-1)).inject(0) {|ac,i|
    ac+((i%2==0) ? 2 : 4)*f[t1+d*i]
  })+f[t2.to_f].to_f)
  out
end

.simpson3by8(t1, t2, n, &f) ⇒ Object

Simpson's 3/8 Rule n implies number of subdivisions Source:

* Burden, Richard L. and Faires, J. Douglas (2000): Numerical Analysis (7th ed.). Brooks/Cole


97
98
99
100
101
102
103
104
# File 'lib/integration.rb', line 97

def simpson3by8(t1, t2, n, &f)
  d = (t2-t1) / n.to_f
  ac = 0
  (0..n-1).each do |i|
    ac+=(d/8.0)*(f[t1+i*d]+3*f[t1+i*d+d/3]+3*f[t1+i*d+2*d/3]+f[t1+(i+1)*d])
  end
  ac
end

.trapezoid(t1, t2, n, &f) ⇒ Object

Trapezoid method n implies number of subdivisions Source:

* Ayres : Outline of calculus


71
72
73
74
75
76
77
# File 'lib/integration.rb', line 71

def trapezoid(t1, t2, n, &f)
  d=(t2-t1) / n.to_f
  (d/2.0)*(f[t1]+
  2*(1..(n-1)).inject(0){|ac,i|
  ac+f[t1+d*i]
  }+f[t2])
end