Class: Torch::Utils::Data::DataLoader
- Inherits:
-
Object
- Object
- Torch::Utils::Data::DataLoader
- Includes:
- Enumerable
- Defined in:
- lib/torch/utils/data/data_loader.rb
Instance Attribute Summary collapse
-
#dataset ⇒ Object
readonly
Returns the value of attribute dataset.
Instance Method Summary collapse
- #each ⇒ Object
-
#initialize(dataset, batch_size: 1, shuffle: false) ⇒ DataLoader
constructor
A new instance of DataLoader.
- #size ⇒ Object
Constructor Details
#initialize(dataset, batch_size: 1, shuffle: false) ⇒ DataLoader
Returns a new instance of DataLoader.
9 10 11 12 13 |
# File 'lib/torch/utils/data/data_loader.rb', line 9 def initialize(dataset, batch_size: 1, shuffle: false) @dataset = dataset @batch_size = batch_size @shuffle = shuffle end |
Instance Attribute Details
#dataset ⇒ Object (readonly)
Returns the value of attribute dataset.
7 8 9 |
# File 'lib/torch/utils/data/data_loader.rb', line 7 def dataset @dataset end |
Instance Method Details
#each ⇒ Object
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
# File 'lib/torch/utils/data/data_loader.rb', line 15 def each # try to keep the random number generator in sync with Python # this makes it easy to compare results base_seed = Torch.empty([], dtype: :int64).random!.item indexes = if @shuffle Torch.randperm(@dataset.size).to_a else @dataset.size.times end indexes.each_slice(@batch_size) do |idx| batch = idx.map { |i| @dataset[i] } yield collate(batch) end end |
#size ⇒ Object
33 34 35 |
# File 'lib/torch/utils/data/data_loader.rb', line 33 def size (@dataset.size / @batch_size.to_f).ceil end |