

Libraries »
pdf-reader (2.12.0)
»
Index »
File: README

pdf-reader

The PDF::Reader library implements a PDF parser conforming as much as possible
to the PDF specification from Adobe.

It provides programmatic access to the contents of a PDF file with a high
degree of flexibility.

The PDF 1.7 specification is a weighty document and not all aspects are
currently supported. I welcome submission of PDF files that exhibit
unsupported aspects of the spec to assist with improving our support.

This is primarily a low-level library that should be used as the foundation for
higher level functionality - it's not going to render a PDF for you. There are
a few exceptions to support very common use cases like extracting text from a
page.

Installation

The recommended installation method is via Rubygems.

 gem install pdf-reader

Usage

Begin by creating a PDF::Reader instance that points to a PDF file. Document
level information (metadata, page count, bookmarks, etc) is available via
this object.

 reader = PDF::Reader.new("somefile.pdf")

 puts reader.pdf_version
 puts reader.info
 puts reader.metadata
 puts reader.page_count

PDF::Reader.new accepts an IO stream or a filename. Here's an example with
an IO stream:

 require 'open-uri'

 io = open('http://example.com/somefile.pdf')
 reader = PDF::Reader.new(io)
 puts reader.info

If you open a PDF with File#open or IO#open, I strongly recommend using "rb"
mode to ensure the file isn't mangled by ruby being 'helpful'. This is
particularly important on windows and MRI >= 1.9.2.

 File.open("somefile.pdf", "rb") do |io|
 reader = PDF::Reader.new(io)
 puts reader.info
 end

PDF is a page based file format, so most visible information is available via
page-based iteration

 reader = PDF::Reader.new("somefile.pdf")

 reader.pages.each do |page|
 puts page.fonts
 puts page.text
 puts page.raw_content
 end

If you need to access the full program for rendering a page, use the walk() method
of PDF::Reader::Page.

 class RedGreenBlue
 def set_rgb_color_for_nonstroking(r, g, b)
 puts "R: #{r}, G: #{g}, B: #{b}"
 end
 end

 reader = PDF::Reader.new("somefile.pdf")
 page = reader.page(1)
 receiver = RedGreenBlue.new
 page.walk(receiver)

For low level access to the objects in a PDF file, use the ObjectHash class like
so:

 reader = PDF::Reader.new("somefile.pdf")
 puts reader.objects.inspect

Text Encoding

Regardless of the internal encoding used in the PDF all text will be converted
to UTF-8 before it is passed back from PDF::Reader.

Strings that contain binary data (like font blobs) will be marked as such.

Former API

Version 1.0.0 of PDF::Reader introduced a new page-based API that provides
efficient and easy access to any page.

The pre-1.0 API was deprecated during the 1.x release series, and has been
removed from 2.0.0.

Exceptions

There are two key exceptions that you will need to watch out for when processing a
PDF file:

MalformedPDFError - The PDF appears to be corrupt in some way. If you believe the
file should be valid, or that a corrupt file didn't raise an exception, please
forward a copy of the file to the maintainers (preferably via the google group)
and we will attempt to improve the code.

UnsupportedFeatureError - The PDF uses a feature that PDF::Reader doesn't currently
support. Again, we welcome submissions of PDF files that exhibit these features to help
us with future code improvements.

MalformedPDFError has some subclasses if you want to detect finer grained issues. If you
don't, 'rescue MalformedPDFError' will catch all the subclassed errors as well.

Any other exceptions should be considered bugs in either PDF::Reader (please
report it!).

PDF Integrity

Windows developers may run into problems when running specs due to MalformedPDFError's
This is usually because CRLF characters are automatically added to some of the PDF's in
the spec folder when you checkout a branch from Git.

To remove any invalid CRLF characters added while checking out a branch from Git, run:

 rake fix_integrity

Maintainers

	James Healy

Licensing

This library is distributed under the terms of the MIT License. See the included file for
more detail.

Mailing List

Any questions or feedback should be sent to the PDF::Reader google group. It's
better that any answers be available for others instead of hiding in someone's
inbox.

http://groups.google.com/group/pdf-reader

Examples

The easiest way to explain how this works in practice is to show some examples.
Check out the examples/ directory for a few files.

Alternate Decoder

For PDF files containing Ascii85 streams, the ascii85_native gem can be used for increased performance. If the ascii85_native gem is detected, pdf-reader will automatically use the gem.

First, run gem install ascii85_native and then require the gem alongside pdf-reader:

require "pdf-reader"
require "ascii85_native"

Another way of enabling native Ascii85 decoding is to place gem 'ascii85_native' in your project's Gemfile.

Known Limitations

Occasionally some text cannot be extracted properly due to the way it has been
stored, or the use of invalid bytes. In these cases PDF::Reader will output a
little UTF-8 friendly box to indicate an unrecognisable character.

Resources

	PDF::Reader Code Repository: http://github.com/yob/pdf-reader

	PDF Specification: https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf

	Adobe PDF Developer Resources: http://www.adobe.com/devnet/pdf/pdf_reference.html

	PDF Tutorial Slide Presentations: https://web.archive.org/web/20150110042057/http://home.comcast.net/~jk05/presentations/PDFTutorials.html

	Developing with PDF (book): http://shop.oreilly.com/product/0636920025269.do

Generated on Fri Mar 8 10:35:38 2024 by
yard
0.9.34 (ruby-3.2.2).

