OR-Tools Ruby
OR-Tools - operations research tools - for Ruby
Installation
Add this line to your application’s Gemfile:
ruby
gem "or-tools"
Installation can take a few minutes as OR-Tools downloads and builds.
Getting Started
Higher Level Interfaces
Linear Optimization
Integer Optimization
Constraint Optimization
Assignment
Routing
- Traveling Salesperson Problem (TSP)
- Vehicle Routing Problem (VRP)
- Capacity Constraints
- Pickups and Deliveries
- Time Window Constraints
- Resource Constraints
- Penalties and Dropping Visits
- Routing Options
Bin Packing
Network Flows
Scheduling
Other Examples
Higher Level Interfaces
Scheduling
Specify people and their availabililty
ruby
people = [
{
availability: [
{starts_at: Time.parse("2020-01-01 08:00:00"), ends_at: Time.parse("2020-01-01 16:00:00")},
{starts_at: Time.parse("2020-01-02 08:00:00"), ends_at: Time.parse("2020-01-02 16:00:00")}
],
max_hours: 40 # optional, applies to entire scheduling period
},
{
availability: [
{starts_at: Time.parse("2020-01-01 08:00:00"), ends_at: Time.parse("2020-01-01 16:00:00")},
{starts_at: Time.parse("2020-01-03 08:00:00"), ends_at: Time.parse("2020-01-03 16:00:00")}
],
max_hours: 20
}
]
Specify shifts
ruby
shifts = [
{starts_at: Time.parse("2020-01-01 08:00:00"), ends_at: Time.parse("2020-01-01 16:00:00")},
{starts_at: Time.parse("2020-01-02 08:00:00"), ends_at: Time.parse("2020-01-02 16:00:00")},
{starts_at: Time.parse("2020-01-03 08:00:00"), ends_at: Time.parse("2020-01-03 16:00:00")}
]
Run the scheduler
ruby
scheduler = ORTools::BasicScheduler.new(people: people, shifts: shifts)
The scheduler maximizes the number of assigned hours. A person must be available for the entire shift to be considered for it.
Get assignments (returns indexes of people and shifts)
ruby
scheduler.assignments
# [
# {person: 2, shift: 0},
# {person: 0, shift: 1},
# {person: 1, shift: 2}
# ]
Get assigned hours and total hours
ruby
scheduler.assigned_hours
scheduler.total_hours
Feel free to create an issue if you have a scheduling use case that’s not covered.
Seating
Create a seating chart based on personal connections. Uses this approach.
Specify connections
ruby
connections = [
{people: ["A", "B", "C"], weight: 2},
{people: ["C", "D", "E", "F"], weight: 1}
]
Use different weights to prioritize seating. For a wedding, it may look like:
ruby
connections = [
{people: knows_partner1, weight: 1},
{people: knows_partner2, weight: 1},
{people: relationship1, weight: 100},
{people: relationship2, weight: 100},
{people: relationship3, weight: 100},
{people: friend_group1, weight: 10},
{people: friend_group2, weight: 10},
# ...
]
If two people have multiple connections, weights are added.
Specify tables and their capacity
ruby
tables = [3, 3]
Assign seats
ruby
seating = ORTools::Seating.new(connections: connections, tables: tables)
Each person will have a connection with at least one other person at their table.
Get tables
ruby
seating.assigned_tables
Get assignments by person
ruby
seating.assignments
Get all connections for a person
ruby
seating.connections_for(person)
Get connections for a person at their table
ruby
seating.connections_for(person, same_table: true)
Traveling Salesperson Problem (TSP)
Create locations - the first location will be the starting and ending point
ruby
locations = [
{name: "Tokyo", latitude: 35.6762, longitude: 139.6503},
{name: "Delhi", latitude: 28.7041, longitude: 77.1025},
{name: "Shanghai", latitude: 31.2304, longitude: 121.4737},
{name: "São Paulo", latitude: -23.5505, longitude: -46.6333},
{name: "Mexico City", latitude: 19.4326, longitude: -99.1332},
{name: "Cairo", latitude: 30.0444, longitude: 31.2357},
{name: "Mumbai", latitude: 19.0760, longitude: 72.8777},
{name: "Beijing", latitude: 39.9042, longitude: 116.4074},
{name: "Dhaka", latitude: 23.8103, longitude: 90.4125},
{name: "Osaka", latitude: 34.6937, longitude: 135.5023},
{name: "New York City", latitude: 40.7128, longitude: -74.0060},
{name: "Karachi", latitude: 24.8607, longitude: 67.0011},
{name: "Buenos Aires", latitude: -34.6037, longitude: -58.3816}
]
Locations can have any fields - only latitude and longitude are required
Get route
ruby
tsp = ORTools::TSP.new(locations)
tsp.route # [{name: "Tokyo", ...}, {name: "Osaka", ...}, ...]
Get distances between locations on route
ruby
tsp.distances # [392.441, 1362.926, 1067.31, ...]
Distances are in kilometers - multiply by 0.6214 for miles
Get total distance
ruby
tsp.total_distance
Sudoku
Create a puzzle with zeros in empty cells
ruby
grid = [
[0, 6, 0, 0, 5, 0, 0, 2, 0],
[0, 0, 0, 3, 0, 0, 0, 9, 0],
[7, 0, 0, 6, 0, 0, 0, 1, 0],
[0, 0, 6, 0, 3, 0, 4, 0, 0],
[0, 0, 4, 0, 7, 0, 1, 0, 0],
[0, 0, 5, 0, 9, 0, 8, 0, 0],
[0, 4, 0, 0, 0, 1, 0, 0, 6],
[0, 3, 0, 0, 0, 8, 0, 0, 0],
[0, 2, 0, 0, 4, 0, 0, 5, 0]
]
sudoku = ORTools::Sudoku.new(grid)
sudoku.solution
It can also solve more advanced puzzles like The Miracle
ruby
grid = [
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]
]
sudoku = ORTools::Sudoku.new(grid, anti_knight: true, anti_king: true, non_consecutive: true)
sudoku.solution
ruby
grid = [
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[3, 8, 4, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 2]
]
sudoku = ORTools::Sudoku.new(grid, x: true, anti_knight: true, magic_square: true)
sudoku.solution
Linear Optimization
Solving an LP Problem
```ruby # declare the solver solver = ORTools::Solver.new(“GLOP”)
create the variables
x = solver.num_var(0, solver.infinity, “x”) y = solver.num_var(0, solver.infinity, “y”) puts “Number of variables = #solversolver.num_variables”
define the constraints
solver.add(x + 2 * y <= 14) solver.add(3 * x - y >= 0) solver.add(x - y <= 2) puts “Number of constraints = #solversolver.num_constraints”
define the objective function
solver.maximize(3 * x + 4 * y)
invoke the solver
status = solver.solve
display the solution
if status == :optimal puts “Solution:” puts “Objective value = #solversolver.objectivesolver.objective.value” puts “x = #xx.solution_value” puts “y = #yy.solution_value” else puts “The problem does not have an optimal solution.” end ```
Integer Optimization
Solving a MIP Problem
```ruby # declare the MIP solver solver = ORTools::Solver.new(“CBC”)
define the variables
infinity = solver.infinity x = solver.int_var(0, infinity, “x”) y = solver.int_var(0, infinity, “y”)
puts “Number of variables = #solversolver.num_variables”
define the constraints
solver.add(x + 7 * y <= 17.5) solver.add(x <= 3.5)
puts “Number of constraints = #solversolver.num_constraints”
define the objective
solver.maximize(x + 10 * y)
call the solver
status = solver.solve
display the solution
if status == :optimal puts “Solution:” puts “Objective value = #solversolver.objectivesolver.objective.value” puts “x = #xx.solution_value” puts “y = #yy.solution_value” else puts “The problem does not have an optimal solution.” end ```
Constraint Optimization
CP-SAT Solver
```ruby # declare the model model = ORTools::CpModel.new
create the variables
num_vals = 3 x = model.new_int_var(0, num_vals - 1, “x”) y = model.new_int_var(0, num_vals - 1, “y”) z = model.new_int_var(0, num_vals - 1, “z”)
create the constraint
model.add(x != y)
call the solver
solver = ORTools::CpSolver.new status = solver.solve(model)
display the first solution
if status == :optimal || status == :feasible puts “x = #solversolver.value(x)” puts “y = #solversolver.value(y)” puts “z = #solversolver.value(z)” else puts “No solution found.” end ```
Solving a CP Problem
```ruby # declare the model model = ORTools::CpModel.new
create the variables
var_upper_bound = [50, 45, 37].max x = model.new_int_var(0, var_upper_bound, “x”) y = model.new_int_var(0, var_upper_bound, “y”) z = model.new_int_var(0, var_upper_bound, “z”)
define the constraints
model.add(x2 + y7 + z3 <= 50) model.add(x3 - y5 + z7 <= 45) model.add(x5 + y2 - z*6 <= 37)
define the objective function
model.maximize(x2 + y2 + z*3)
call the solver
solver = ORTools::CpSolver.new status = solver.solve(model)
display the solution
if status == :optimal || status == :feasible puts “Maximum of objective function: #solversolver.objective_value” puts “x = #solversolver.value(x)” puts “y = #solversolver.value(y)” puts “z = #solversolver.value(z)” else puts “No solution found.” end ```
Cryptarithmetic
```ruby # define the variables model = ORTools::CpModel.new
base = 10
c = model.new_int_var(1, base - 1, “C”) p = model.new_int_var(0, base - 1, “P”) i = model.new_int_var(1, base - 1, “I”) s = model.new_int_var(0, base - 1, “S”) f = model.new_int_var(1, base - 1, “F”) u = model.new_int_var(0, base - 1, “U”) n = model.new_int_var(0, base - 1, “N”) t = model.new_int_var(1, base - 1, “T”) r = model.new_int_var(0, base - 1, “R”) e = model.new_int_var(0, base - 1, “E”)
letters = [c, p, i, s, f, u, n, t, r, e]
define the constraints
model.add_all_different(letters)
model.add(c * base + p + i * base + s + f * base * base + u * base + n == t * base * base * base + r * base * base + u * base + e)
define the solution printer
class VarArraySolutionPrinter < ORTools::CpSolverSolutionCallback attr_reader :solution_count
def initialize(variables) super() @variables = variables @solution_count = 0 end
def on_solution_callback @solution_count += 1 @variables.each do |v| print “%s=%i “ % [v.name, value(v)] end puts end end
invoke the solver
solver = ORTools::CpSolver.new solution_printer = VarArraySolutionPrinter.new(letters) status = solver.search_for_all_solutions(model, solution_printer)
puts puts “Statistics” puts “ - status : %s” % status puts “ - conflicts : %i” % solver.num_conflicts puts “ - branches : %i” % solver.num_branches puts “ - wall time : %f s” % solver.wall_time puts “ - solutions found : %i” % solution_printer.solution_count ```
The N-queens Problem
```ruby # declare the model board_size = 8 model = ORTools::CpModel.new
create the variables
queens = board_size.times.map { |i| model.new_int_var(0, board_size - 1, “x%i” % i) }
create the constraints
board_size.times do |i| diag1 = [] diag2 = [] board_size.times do |j| q1 = model.new_int_var(0, 2 * board_size, “diag1%i” % i) diag1 « q1 model.add(q1 == queens[j] + j) q2 = model.new_int_var(-board_size, board_size, “diag2%i” % i) diag2 « q2 model.add(q2 == queens[j] - j) end model.add_all_different(diag1) model.add_all_different(diag2) end
create a solution printer
class SolutionPrinter < ORTools::CpSolverSolutionCallback attr_reader :solution_count
def initialize(variables) super() @variables = variables @solution_count = 0 end
def on_solution_callback @solution_count += 1 @variables.each do |v| print “%s = %i “ % [v.name, value(v)] end puts end end
call the solver and display the results
solver = ORTools::CpSolver.new solution_printer = SolutionPrinter.new(queens) status = solver.search_for_all_solutions(model, solution_printer) puts puts “Solutions found : %i” % solution_printer.solution_count ```
Setting Solver Limits
```ruby # create the model model = ORTools::CpModel.new
create the variables
num_vals = 3 x = model.new_int_var(0, num_vals - 1, “x”) y = model.new_int_var(0, num_vals - 1, “y”) z = model.new_int_var(0, num_vals - 1, “z”)
add an all-different constraint
model.add(x != y)
create the solver
solver = ORTools::CpSolver.new
set a time limit of 10 seconds.
solver.parameters.max_time_in_seconds = 10
solve the model
status = solver.solve(model)
display the first solution
if status == :optimal puts “x = #solversolver.value(x)” puts “y = #solversolver.value(y)” puts “z = #solversolver.value(z)” end ```
Assignment
Solving an Assignment Problem
```ruby # create the data costs = [ [90, 80, 75, 70], [35, 85, 55, 65], [125, 95, 90, 95], [45, 110, 95, 115], [50, 100, 90, 100] ] num_workers = costs.length num_tasks = costs[0].length
create the solver
solver = ORTools::Solver.new(“CBC”)
create the variables
x = {} num_workers.times do |i| num_tasks.times do |j| x[[i, j]] = solver.int_var(0, 1, “”) end end
create the constraints
# each worker is assigned to at most 1 task num_workers.times do |i| solver.add(num_tasks.times.sum { |j| x[[i, j]] } <= 1) end
each task is assigned to exactly one worker
num_tasks.times do |j| solver.add(num_workers.times.sum { |i| x[[i, j]] } == 1) end
create the objective function
objective_terms = [] num_workers.times do |i| num_tasks.times do |j| objective_terms « (costs[i][j] * x[[i, j]]) end end solver.minimize(objective_terms.sum)
invoke the solver
status = solver.solve
print the solution
if status == :optimal || status == :feasible puts “Total cost = #solversolver.objectivesolver.objective.value” num_workers.times do |i| num_tasks.times do |j| # test if x[i,j] is 1 (with tolerance for floating point arithmetic) if x[[i, j]].solution_value > 0.5 puts “Worker #i assigned to task #j. Cost = #costs[i][j]” end end end else puts “No solution found.” end ```
Assignment with Teams of Workers
```ruby # create the data costs = [ [90, 76, 75, 70], [35, 85, 55, 65], [125, 95, 90, 105], [45, 110, 95, 115], [60, 105, 80, 75], [45, 65, 110, 95] ] num_workers = costs.length num_tasks = costs[1].length
team1 = [0, 2, 4] team2 = [1, 3, 5] team_max = 2
create the solver
solver = ORTools::Solver.new(“CBC”)
create the variables
x = {} num_workers.times do |i| num_tasks.times do |j| x[[i, j]] = solver.bool_var(“x[#i,#j]”) end end
add the constraints
# each worker is assigned at most 1 task num_workers.times do |i| solver.add(num_tasks.times.sum { |j| x[[i, j]] } <= 1) end
each task is assigned to exactly one worker
num_tasks.times do |j| solver.add(num_workers.times.sum { |i| x[[i, j]] } == 1) end
each team takes at most two tasks
solver.add(team1.flat_map { |i| num_tasks.times.map { |j| x[[i, j]] } }.sum <= team_max) solver.add(team2.flat_map { |i| num_tasks.times.map { |j| x[[i, j]] } }.sum <= team_max)
create the objective
solver.minimize( num_workers.times.flat_map { |i| num_tasks.times.map { |j| x[[i, j]] * costs[i][j] } }.sum )
invoke the solver
status = solver.solve
display the results
if status == :optimal || status == :feasible puts “Total cost = #solversolver.objectivesolver.objective.value” num_workers.times do |worker| num_tasks.times do |task| if x[[worker, task]].solution_value > 0.5 puts “Worker #worker assigned to task #task. Cost = #costs[worker][task]” end end end else puts “No solution found.” end ```
Linear Sum Assignment Solver
```ruby # create the data costs = [ [90, 76, 75, 70], [35, 85, 55, 65], [125, 95, 90, 105], [45, 110, 95, 115], ] num_workers = costs.length num_tasks = costs[0].length
create the solver
assignment = ORTools::LinearSumAssignment.new
add the constraints
num_workers.times do |worker| num_tasks.times do |task| if costs[worker][task] assignment.add_arc_with_cost(worker, task, costs[worker][task]) end end end
invoke the solver
status = assignment.solve
display the results
case status when :optimal puts “Total cost = #assignmentassignment.optimal_cost” assignment.num_nodes.times do |i| puts “Worker #i assigned to task #assignmentassignment.right_mate(i). Cost = #assignmentassignment.assignment_cost(i)” end when :infeasible puts “No assignment is possible.” when :possible_overflow puts “Some input costs are too large and may cause an integer overflow.” end ```
Routing
Traveling Salesperson Problem (TSP)
```ruby # create the data data = {} data[:distance_matrix] = [ [0, 2451, 713, 1018, 1631, 1374, 2408, 213, 2571, 875, 1420, 2145, 1972], [2451, 0, 1745, 1524, 831, 1240, 959, 2596, 403, 1589, 1374, 357, 579], [713, 1745, 0, 355, 920, 803, 1737, 851, 1858, 262, 940, 1453, 1260], [1018, 1524, 355, 0, 700, 862, 1395, 1123, 1584, 466, 1056, 1280, 987], [1631, 831, 920, 700, 0, 663, 1021, 1769, 949, 796, 879, 586, 371], [1374, 1240, 803, 862, 663, 0, 1681, 1551, 1765, 547, 225, 887, 999], [2408, 959, 1737, 1395, 1021, 1681, 0, 2493, 678, 1724, 1891, 1114, 701], [213, 2596, 851, 1123, 1769, 1551, 2493, 0, 2699, 1038, 1605, 2300, 2099], [2571, 403, 1858, 1584, 949, 1765, 678, 2699, 0, 1744, 1645, 653, 600], [875, 1589, 262, 466, 796, 547, 1724, 1038, 1744, 0, 679, 1272, 1162], [1420, 1374, 940, 1056, 879, 225, 1891, 1605, 1645, 679, 0, 1017, 1200], [2145, 357, 1453, 1280, 586, 887, 1114, 2300, 653, 1272, 1017, 0, 504], [1972, 579, 1260, 987, 371, 999, 701, 2099, 600, 1162, 1200, 504, 0] ] data[:num_vehicles] = 1 data[:depot] = 0
create the distance callback
manager = ORTools::RoutingIndexManager.new(data[:distance_matrix].length, data[:num_vehicles], data[:depot]) routing = ORTools::RoutingModel.new(manager)
distance_callback = lambda do |from_index, to_index| from_node = manager.index_to_node(from_index) to_node = manager.index_to_node(to_index) data[:distance_matrix][from_node][to_node] end
transit_callback_index = routing.register_transit_callback(distance_callback) routing.set_arc_cost_evaluator_of_all_vehicles(transit_callback_index)
run the solver
assignment = routing.solve(first_solution_strategy: :path_cheapest_arc)
print the solution
puts “Objective: #assignmentassignment.objective_value miles” index = routing.start(0) plan_output = String.new(“Route for vehicle 0:\n”) route_distance = 0 while !routing.end?(index) plan_output += “ #managermanager.index_to_node(index) ->” previous_index = index index = assignment.value(routing.next_var(index)) route_distance += routing.arc_cost_for_vehicle(previous_index, index, 0) end plan_output += “ #managermanager.index_to_node(index)\n” puts plan_output ```
Vehicle Routing Problem (VRP)
```ruby # create the data data = {} data[:distance_matrix] = [ [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662], [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210], [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754], [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358], [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244], [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708], [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480], [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856], [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514], [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468], [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354], [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844], [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730], [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536], [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194], [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798], [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0] ] data[:num_vehicles] = 4 data[:depot] = 0
define the distance callback
manager = ORTools::RoutingIndexManager.new(data[:distance_matrix].length, data[:num_vehicles], data[:depot]) routing = ORTools::RoutingModel.new(manager)
distance_callback = lambda do |from_index, to_index| from_node = manager.index_to_node(from_index) to_node = manager.index_to_node(to_index) data[:distance_matrix][from_node][to_node] end
transit_callback_index = routing.register_transit_callback(distance_callback) routing.set_arc_cost_evaluator_of_all_vehicles(transit_callback_index)
add a distance dimension
dimension_name = “Distance” routing.add_dimension(transit_callback_index, 0, 3000, true, dimension_name) distance_dimension = routing.mutable_dimension(dimension_name) distance_dimension.global_span_cost_coefficient = 100
run the solver
solution = routing.solve(first_solution_strategy: :path_cheapest_arc)
print the solution
max_route_distance = 0 data[:num_vehicles].times do |vehicle_id| index = routing.start(vehicle_id) plan_output = String.new(“Route for vehicle #vehicle_id:\n”) route_distance = 0 while !routing.end?(index) plan_output += “ #managermanager.index_to_node(index) -> “ previous_index = index index = solution.value(routing.next_var(index)) route_distance += routing.arc_cost_for_vehicle(previous_index, index, vehicle_id) end plan_output += “#managermanager.index_to_node(index)\n” plan_output += “Distance of the route: #route_distancem\n\n” puts plan_output max_route_distance = [route_distance, max_route_distance].max end puts “Maximum of the route distances: #max_route_distancem” ```
Capacity Constraints
```ruby data = {} data[:distance_matrix] = [ [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662], [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210], [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754], [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358], [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244], [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708], [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480], [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856], [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514], [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468], [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354], [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844], [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730], [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536], [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194], [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798], [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0] ] data[:demands] = [0, 1, 1, 2, 4, 2, 4, 8, 8, 1, 2, 1, 2, 4, 4, 8, 8] data[:vehicle_capacities] = [15, 15, 15, 15] data[:num_vehicles] = 4 data[:depot] = 0
manager = ORTools::RoutingIndexManager.new(data[:distance_matrix].size, data[:num_vehicles], data[:depot]) routing = ORTools::RoutingModel.new(manager)
distance_callback = lambda do |from_index, to_index| from_node = manager.index_to_node(from_index) to_node = manager.index_to_node(to_index) data[:distance_matrix][from_node][to_node] end
transit_callback_index = routing.register_transit_callback(distance_callback)
routing.set_arc_cost_evaluator_of_all_vehicles(transit_callback_index)
demand_callback = lambda do |from_index| from_node = manager.index_to_node(from_index) data[:demands][from_node] end
demand_callback_index = routing.register_unary_transit_callback(demand_callback) routing.add_dimension_with_vehicle_capacity( demand_callback_index, 0, # null capacity slack data[:vehicle_capacities], # vehicle maximum capacities true, # start cumul to zero “Capacity” )
solution = routing.solve(first_solution_strategy: :path_cheapest_arc)
total_distance = 0 total_load = 0 data[:num_vehicles].times do |vehicle_id| index = routing.start(vehicle_id) plan_output = String.new(“Route for vehicle #vehicle_id:\n”) route_distance = 0 route_load = 0 while !routing.end?(index) node_index = manager.index_to_node(index) route_load += data[:demands][node_index] plan_output += “ #node_index Load(#route_load) -> “ previous_index = index index = solution.value(routing.next_var(index)) route_distance += routing.arc_cost_for_vehicle(previous_index, index, vehicle_id) end plan_output += “ #managermanager.index_to_node(index) Load(#route_load)\n” plan_output += “Distance of the route: #route_distancem\n” plan_output += “Load of the route: #route_load\n\n” puts plan_output total_distance += route_distance total_load += route_load end puts “Total distance of all routes: #total_distancem” puts “Total load of all routes: #total_load” ```
Pickups and Deliveries
```ruby data = {} data[:distance_matrix] = [ [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662], [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210], [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754], [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358], [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244], [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708], [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480], [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856], [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514], [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468], [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354], [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844], [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730], [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536], [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194], [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798], [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0] ] data[:pickups_deliveries] = [ [1, 6], [2, 10], [4, 3], [5, 9], [7, 8], [15, 11], [13, 12], [16, 14], ] data[:num_vehicles] = 4 data[:depot] = 0
manager = ORTools::RoutingIndexManager.new(data[:distance_matrix].size, data[:num_vehicles], data[:depot]) routing = ORTools::RoutingModel.new(manager)
distance_callback = lambda do |from_index, to_index| from_node = manager.index_to_node(from_index) to_node = manager.index_to_node(to_index) data[:distance_matrix][from_node][to_node] end
transit_callback_index = routing.register_transit_callback(distance_callback) routing.set_arc_cost_evaluator_of_all_vehicles(transit_callback_index)
dimension_name = “Distance” routing.add_dimension( transit_callback_index, 0, # no slack 3000, # vehicle maximum travel distance true, # start cumul to zero dimension_name ) distance_dimension = routing.mutable_dimension(dimension_name) distance_dimension.global_span_cost_coefficient = 100
data[:pickups_deliveries].each do |request| pickup_index = manager.node_to_index(request[0]) delivery_index = manager.node_to_index(request[1]) routing.add_pickup_and_delivery(pickup_index, delivery_index) routing.solver.add(routing.vehicle_var(pickup_index) == routing.vehicle_var(delivery_index)) routing.solver.add(distance_dimension.cumul_var(pickup_index) <= distance_dimension.cumul_var(delivery_index)) end
solution = routing.solve(first_solution_strategy: :parallel_cheapest_insertion)
total_distance = 0 data[:num_vehicles].times do |vehicle_id| index = routing.start(vehicle_id) plan_output = String.new(“Route for vehicle #vehicle_id:\n”) route_distance = 0 while !routing.end?(index) plan_output += “ #managermanager.index_to_node(index) -> “ previous_index = index index = solution.value(routing.next_var(index)) route_distance += routing.arc_cost_for_vehicle(previous_index, index, vehicle_id) end plan_output += “#managermanager.index_to_node(index)\n” plan_output += “Distance of the route: #route_distancem\n\n” puts plan_output total_distance += route_distance end puts “Total Distance of all routes: #total_distancem” ```
Time Window Constraints
```ruby data = {} data[:time_matrix] = [ [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7], [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14], [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9], [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16], [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14], [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8], [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5], [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10], [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6], [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5], [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4], [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10], [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8], [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6], [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2], [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9], [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0], ] data[:time_windows] = [ [0, 5], # depot [7, 12], # 1 [10, 15], # 2 [16, 18], # 3 [10, 13], # 4 [0, 5], # 5 [5, 10], # 6 [0, 4], # 7 [5, 10], # 8 [0, 3], # 9 [10, 16], # 10 [10, 15], # 11 [0, 5], # 12 [5, 10], # 13 [7, 8], # 14 [10, 15], # 15 [11, 15], # 16 ] data[:num_vehicles] = 4 data[:depot] = 0
manager = ORTools::RoutingIndexManager.new(data[:time_matrix].size, data[:num_vehicles], data[:depot]) routing = ORTools::RoutingModel.new(manager)
time_callback = lambda do |from_index, to_index| from_node = manager.index_to_node(from_index) to_node = manager.index_to_node(to_index) data[:time_matrix][from_node][to_node] end
transit_callback_index = routing.register_transit_callback(time_callback) routing.set_arc_cost_evaluator_of_all_vehicles(transit_callback_index) time = “Time” routing.add_dimension( transit_callback_index, 30, # allow waiting time 30, # maximum time per vehicle false, # don’t force start cumul to zero time ) time_dimension = routing.mutable_dimension(time)
data[:time_windows].each_with_index do |time_window, location_idx| next if location_idx == 0 index = manager.node_to_index(location_idx) time_dimension.cumul_var(index).set_range(time_window[0], time_window[1]) end
data[:num_vehicles].times do |vehicle_id| index = routing.start(vehicle_id) time_dimension.cumul_var(index).set_range(data[:time_windows][0][0], data[:time_windows][0][1]) end
data[:num_vehicles].times do |i| routing.add_variable_minimized_by_finalizer(time_dimension.cumul_var(routing.start(i))) routing.add_variable_minimized_by_finalizer(time_dimension.cumul_var(routing.end(i))) end
solution = routing.solve(first_solution_strategy: :path_cheapest_arc)
time_dimension = routing.mutable_dimension(“Time”) total_time = 0 data[:num_vehicles].times do |vehicle_id| index = routing.start(vehicle_id) plan_output = String.new(“Route for vehicle #vehicle_id:\n”) while !routing.end?(index) time_var = time_dimension.cumul_var(index) plan_output += “#managermanager.index_to_node(index) Time(#solutionsolution.min(time_var),#solutionsolution.max(time_var)) -> “ index = solution.value(routing.next_var(index)) end time_var = time_dimension.cumul_var(index) plan_output += “#managermanager.index_to_node(index) Time(#solutionsolution.min(time_var),#solutionsolution.max(time_var))\n” plan_output += “Time of the route: #solutionsolution.min(time_var)min\n\n” puts plan_output total_time += solution.min(time_var) end puts “Total time of all routes: #total_timemin” ```
Resource Constraints
```ruby data = {} data[:time_matrix] = [ [0, 6, 9, 8, 7, 3, 6, 2, 3, 2, 6, 6, 4, 4, 5, 9, 7], [6, 0, 8, 3, 2, 6, 8, 4, 8, 8, 13, 7, 5, 8, 12, 10, 14], [9, 8, 0, 11, 10, 6, 3, 9, 5, 8, 4, 15, 14, 13, 9, 18, 9], [8, 3, 11, 0, 1, 7, 10, 6, 10, 10, 14, 6, 7, 9, 14, 6, 16], [7, 2, 10, 1, 0, 6, 9, 4, 8, 9, 13, 4, 6, 8, 12, 8, 14], [3, 6, 6, 7, 6, 0, 2, 3, 2, 2, 7, 9, 7, 7, 6, 12, 8], [6, 8, 3, 10, 9, 2, 0, 6, 2, 5, 4, 12, 10, 10, 6, 15, 5], [2, 4, 9, 6, 4, 3, 6, 0, 4, 4, 8, 5, 4, 3, 7, 8, 10], [3, 8, 5, 10, 8, 2, 2, 4, 0, 3, 4, 9, 8, 7, 3, 13, 6], [2, 8, 8, 10, 9, 2, 5, 4, 3, 0, 4, 6, 5, 4, 3, 9, 5], [6, 13, 4, 14, 13, 7, 4, 8, 4, 4, 0, 10, 9, 8, 4, 13, 4], [6, 7, 15, 6, 4, 9, 12, 5, 9, 6, 10, 0, 1, 3, 7, 3, 10], [4, 5, 14, 7, 6, 7, 10, 4, 8, 5, 9, 1, 0, 2, 6, 4, 8], [4, 8, 13, 9, 8, 7, 10, 3, 7, 4, 8, 3, 2, 0, 4, 5, 6], [5, 12, 9, 14, 12, 6, 6, 7, 3, 3, 4, 7, 6, 4, 0, 9, 2], [9, 10, 18, 6, 8, 12, 15, 8, 13, 9, 13, 3, 4, 5, 9, 0, 9], [7, 14, 9, 16, 14, 8, 5, 10, 6, 5, 4, 10, 8, 6, 2, 9, 0] ] data[:time_windows] = [ [0, 5], # depot [7, 12], # 1 [10, 15], # 2 [5, 14], # 3 [5, 13], # 4 [0, 5], # 5 [5, 10], # 6 [0, 10], # 7 [5, 10], # 8 [0, 5], # 9 [10, 16], # 10 [10, 15], # 11 [0, 5], # 12 [5, 10], # 13 [7, 12], # 14 [10, 15], # 15 [5, 15], # 16 ] data[:num_vehicles] = 4 data[:vehicle_load_time] = 5 data[:vehicle_unload_time] = 5 data[:depot_capacity] = 2 data[:depot] = 0
manager = ORTools::RoutingIndexManager.new(data[:time_matrix].size, data[:num_vehicles], data[:depot]) routing = ORTools::RoutingModel.new(manager)
time_callback = lambda do |from_index, to_index| from_node = manager.index_to_node(from_index) to_node = manager.index_to_node(to_index) data[:time_matrix][from_node][to_node] end
transit_callback_index = routing.register_transit_callback(time_callback)
routing.set_arc_cost_evaluator_of_all_vehicles(transit_callback_index)
time = “Time” routing.add_dimension( transit_callback_index, 60, # allow waiting time 60, # maximum time per vehicle false, # don’t force start cumul to zero time ) time_dimension = routing.mutable_dimension(time) data[:time_windows].each_with_index do |time_window, location_idx| next if location_idx == 0 index = manager.node_to_index(location_idx) time_dimension.cumul_var(index).set_range(time_window[0], time_window[1]) end
data[:num_vehicles].times do |vehicle_id| index = routing.start(vehicle_id) time_dimension.cumul_var(index).set_range(data[:time_windows][0][0], data[:time_windows][0][1]) end
solver = routing.solver intervals = [] data[:num_vehicles].times do |i| intervals « solver.fixed_duration_interval_var( time_dimension.cumul_var(routing.start(i)), data[:vehicle_load_time], “depot_interval” ) intervals « solver.fixed_duration_interval_var( time_dimension.cumul_var(routing.end(i)), data[:vehicle_unload_time], “depot_interval” ) end
depot_usage = [1] * intervals.size solver.add(solver.cumulative(intervals, depot_usage, data[:depot_capacity], “depot”))
data[:num_vehicles].times do |i| routing.add_variable_minimized_by_finalizer(time_dimension.cumul_var(routing.start(i))) routing.add_variable_minimized_by_finalizer(time_dimension.cumul_var(routing.end(i))) end
solution = routing.solve(first_solution_strategy: :path_cheapest_arc)
time_dimension = routing.mutable_dimension(“Time”) total_time = 0 data[:num_vehicles].times do |vehicle_id| index = routing.start(vehicle_id) plan_output = String.new(“Route for vehicle #vehicle_id:\n”) while !routing.end?(index) time_var = time_dimension.cumul_var(index) plan_output += “#managermanager.index_to_node(index) Time(#solutionsolution.min(time_var),#solutionsolution.max(time_var)) -> “ index = solution.value(routing.next_var(index)) end time_var = time_dimension.cumul_var(index) plan_output += “#managermanager.index_to_node(index) Time(#solutionsolution.min(time_var),#solutionsolution.max(time_var))\n” plan_output += “Time of the route: #solutionsolution.min(time_var)min\n\n” puts plan_output total_time += solution.min(time_var) end puts “Total time of all routes: #total_timemin” ```
Penalties and Dropping Visits
```ruby data = {} data[:distance_matrix] = [ [0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354, 468, 776, 662], [548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674, 1016, 868, 1210], [776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164, 1130, 788, 1552, 754], [696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822, 1164, 560, 1358], [582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708, 1050, 674, 1244], [274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628, 514, 1050, 708], [502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856, 514, 1278, 480], [194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320, 662, 742, 856], [308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662, 320, 1084, 514], [194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388, 274, 810, 468], [536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764, 730, 388, 1152, 354], [502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114, 308, 650, 274, 844], [388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194, 536, 388, 730], [354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0, 342, 422, 536], [468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536, 342, 0, 764, 194], [776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274, 388, 422, 764, 0, 798], [662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730, 536, 194, 798, 0] ] data[:demands] = [0, 1, 1, 3, 6, 3, 6, 8, 8, 1, 2, 1, 2, 6, 6, 8, 8] data[:vehicle_capacities] = [15, 15, 15, 15] data[:num_vehicles] = 4 data[:depot] = 0
manager = ORTools::RoutingIndexManager.new(data[:distance_matrix].size, data[:num_vehicles], data[:depot]) routing = ORTools::RoutingModel.new(manager)
distance_callback = lambda do |from_index, to_index| from_node = manager.index_to_node(from_index) to_node = manager.index_to_node(to_index) data[:distance_matrix][from_node][to_node] end
transit_callback_index = routing.register_transit_callback(distance_callback)
routing.set_arc_cost_evaluator_of_all_vehicles(transit_callback_index)
demand_callback = lambda do |from_index| from_node = manager.index_to_node(from_index) data[:demands][from_node] end
demand_callback_index = routing.register_unary_transit_callback(demand_callback) routing.add_dimension_with_vehicle_capacity( demand_callback_index, 0, # null capacity slack data[:vehicle_capacities], # vehicle maximum capacities true, # start cumul to zero “Capacity” )
penalty = 1000 1.upto(data[:distance_matrix].size - 1) do |node| routing.add_disjunction([manager.node_to_index(node)], penalty) end
assignment = routing.solve(first_solution_strategy: :path_cheapest_arc)
dropped_nodes = String.new(“Dropped nodes:”) routing.size.times do |node| next if routing.start?(node) || routing.end?(node)
if assignment.value(routing.next_var(node)) == node dropped_nodes += “ #managermanager.index_to_node(node)” end end puts dropped_nodes
total_distance = 0 total_load = 0 data[:num_vehicles].times do |vehicle_id| index = routing.start(vehicle_id) plan_output = “Route for vehicle #vehicle_id:\n” route_distance = 0 route_load = 0 while !routing.end?(index) node_index = manager.index_to_node(index) route_load += data[:demands][node_index] plan_output += “ #node_index Load(#route_load) -> “ previous_index = index index = assignment.value(routing.next_var(index)) route_distance += routing.arc_cost_for_vehicle(previous_index, index, vehicle_id) end plan_output += “ #managermanager.index_to_node(index) Load(#route_load)\n” plan_output += “Distance of the route: #route_distancem\n” plan_output += “Load of the route: #route_load\n\n” puts plan_output total_distance += route_distance total_load += route_load end puts “Total Distance of all routes: #total_distancem” puts “Total Load of all routes: #total_load” ```
Routing Options
ruby
routing.solve(
solution_limit: 10,
time_limit: 10, # seconds,
lns_time_limit: 10, # seconds
first_solution_strategy: :path_cheapest_arc,
local_search_metaheuristic: :guided_local_search,
log_search: true
)
Bin Packing
The Knapsack Problem
```ruby # create the data values = [ 360, 83, 59, 130, 431, 67, 230, 52, 93, 125, 670, 892, 600, 38, 48, 147, 78, 256, 63, 17, 120, 164, 432, 35, 92, 110, 22, 42, 50, 323, 514, 28, 87, 73, 78, 15, 26, 78, 210, 36, 85, 189, 274, 43, 33, 10, 19, 389, 276, 312 ] weights = [[ 7, 0, 30, 22, 80, 94, 11, 81, 70, 64, 59, 18, 0, 36, 3, 8, 15, 42, 9, 0, 42, 47, 52, 32, 26, 48, 55, 6, 29, 84, 2, 4, 18, 56, 7, 29, 93, 44, 71, 3, 86, 66, 31, 65, 0, 79, 20, 65, 52, 13 ]] capacities = [850]
declare the solver
solver = ORTools::KnapsackSolver.new(:branch_and_bound, “KnapsackExample”)
call the solver
solver.init(values, weights, capacities) computed_value = solver.solve
packed_items = [] packed_weights = [] total_weight = 0 puts “Total value = #computed_value” values.length.times do |i| if solver.best_solution_contains?(i) packed_items « i packed_weights « weights[0][i] total_weight += weights[0][i] end end puts “Total weight: #total_weight” puts “Packed items: #packed_items” puts “Packed weights: #packed_weights” ```
Multiple Knapsacks
```ruby # create the data data = {} data[:weights] = [48, 30, 42, 36, 36, 48, 42, 42, 36, 24, 30, 30, 42, 36, 36] data[:values] = [10, 30, 25, 50, 35, 30, 15, 40, 30, 35, 45, 10, 20, 30, 25] data[:num_items] = data[:weights].length data[:all_items] = data[:num_items].times.to_a data[:bin_capacities] = [100, 100, 100, 100, 100] data[:num_bins] = data[:bin_capacities].length data[:all_bins] = data[:num_bins].times.to_a
declare the solver
solver = ORTools::Solver.new(“CBC”)
create the variables
x = {} data[:all_items].each do |i| data[:all_bins].each do |b| x[[i, b]] = solver.bool_var(“x_#i_#b”) end end
each item is assigned to at most one bin
data[:all_items].each do |i| solver.add(data[:all_bins].sum { |b| x[[i, b]] } <= 1) end
the amount packed in each bin cannot exceed its capacity
data[:all_bins].each do |b| solver.add(data[:all_items].sum { |i| x[[i, b]] * data[:weights][i] } <= data[:bin_capacities][b]) end
maximize total value of packed items
objective = solver.objective data[:all_items].each do |i| data[:all_bins].each do |b| objective.set_coefficient(x[[i, b]], data[:values][i]) end end objective.set_maximization
call the solver and print the solution
status = solver.solve
if status == :optimal puts “Total packed value: #objectiveobjective.value” total_weight = 0 data[:all_bins].each do |b| bin_weight = 0 bin_value = 0 puts “Bin #b\n\n” data[:all_items].each do |i| if x[[i, b]].solution_value > 0 puts “Item #i - weight: #data[:weights][i] value: #data[:values][i]” bin_weight += data[:weights][i] bin_value += data[:values][i] end end puts “Packed bin weight: #bin_weight” puts “Packed bin value: #bin_value” puts total_weight += bin_weight end puts “Total packed weight: #total_weight” else puts “The problem does not have an optimal solution.” end ```
Bin Packing Problem
```ruby # create the data data = {} weights = [48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30] data[:weights] = weights data[:items] = (0…weights.length).to_a data[:bins] = data[:items] data[:bin_capacity] = 100
create the mip solver with the CBC backend
solver = ORTools::Solver.new(“CBC”)
variables
# x[i, j] = 1 if item i is packed in bin j x = {} data[:items].each do |i| data[:bins].each do |j| x[[i, j]] = solver.int_var(0, 1, “x_%i_%i” % [i, j]) end end
y[j] = 1 if bin j is used
y = {} data[:bins].each do |j| y[j] = solver.int_var(0, 1, “y[%i]” % j) end
constraints
# each item must be in exactly one bin data[:items].each do |i| solver.add(data[:bins].sum { |j| x[[i, j]] } == 1) end
the amount packed in each bin cannot exceed its capacity
data[:bins].each do |j| sum = data[:items].sum { |i| x[[i, j]] * data[:weights][i] } solver.add(sum <= y[j] * data[:bin_capacity]) end
objective: minimize the number of bins used
solver.minimize(data[:bins].sum { |j| y[j] })
call the solver and print the solution
status = solver.solve
if status == :optimal num_bins = 0 data[:bins].each do |j| if y[j].solution_value == 1 bin_items = [] bin_weight = 0 data[:items].each do |i| if x[[i, j]].solution_value > 0 bin_items « i bin_weight += data[:weights][i] end end if bin_weight > 0 num_bins += 1 puts “Bin number #j” puts “ Items packed: #bin_items” puts “ Total weight: #bin_weight” puts end end end puts puts “Number of bins used: #num_bins” puts “Time = #solversolver.wall_time milliseconds” else puts “The problem does not have an optimal solution.” end ```
Network Flows
Maximum Flows
```ruby # define the data start_nodes = [0, 0, 0, 1, 1, 2, 2, 3, 3] end_nodes = [1, 2, 3, 2, 4, 3, 4, 2, 4] capacities = [20, 30, 10, 40, 30, 10, 20, 5, 20]
declare the solver and add the arcs
max_flow = ORTools::SimpleMaxFlow.new
start_nodes.length.times do |i| max_flow.add_arc_with_capacity(start_nodes[i], end_nodes[i], capacities[i]) end
invoke the solver and display the results
if max_flow.solve(0, 4) == :optimal puts “Max flow: #max_flowmax_flow.optimal_flow” puts puts “ Arc Flow / Capacity” max_flow.num_arcs.times do |i| puts “%1s -> %1s %3s / %3s” % [ max_flow.tail(i), max_flow.head(i), max_flow.flow(i), max_flow.capacity(i) ] end puts “Source side min-cut: #max_flowmax_flow.source_side_min_cut” puts “Sink side min-cut: #max_flowmax_flow.sink_side_min_cut” else puts “There was an issue with the max flow input.” end ```
Minimum Cost Flows
```ruby # define the data start_nodes = [ 0, 0, 1, 1, 1, 2, 2, 3, 4] end_nodes = [ 1, 2, 2, 3, 4, 3, 4, 4, 2] capacities = [15, 8, 20, 4, 10, 15, 4, 20, 5] unit_costs = [ 4, 4, 2, 2, 6, 1, 3, 2, 3] supplies = [20, 0, 0, -5, -15]
declare the solver and add the arcs
min_cost_flow = ORTools::SimpleMinCostFlow.new
start_nodes.length.times do |i| min_cost_flow.add_arc_with_capacity_and_unit_cost( start_nodes[i], end_nodes[i], capacities[i], unit_costs[i] ) end
supplies.length.times do |i| min_cost_flow.set_node_supply(i, supplies[i]) end
invoke the solver and display the results
if min_cost_flow.solve == :optimal puts “Minimum cost #min_cost_flowmin_cost_flow.optimal_cost” puts puts “ Arc Flow / Capacity Cost” min_cost_flow.num_arcs.times do |i| cost = min_cost_flow.flow(i) * min_cost_flow.unit_cost(i) puts “%1s -> %1s %3s / %3s %3s” % [ min_cost_flow.tail(i), min_cost_flow.head(i), min_cost_flow.flow(i), min_cost_flow.capacity(i), cost ] end else puts “There was an issue with the min cost flow input.” end ```
Assignment as a Min Cost Flow Problem
```ruby # create the solver min_cost_flow = ORTools::SimpleMinCostFlow.new
create the data
start_nodes = [0, 0, 0, 0] + [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4] + [5, 6, 7, 8] end_nodes = [1, 2, 3, 4] + [5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8, 5, 6, 7, 8] + [9, 9, 9, 9] capacities = [1, 1, 1, 1] + [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] + [1, 1, 1, 1] costs = [0, 0, 0, 0] + [90, 76, 75, 70, 35, 85, 55, 65, 125, 95, 90, 105, 45, 110, 95, 115] + [0, 0, 0, 0] supplies = [4, 0, 0, 0, 0, 0, 0, 0, 0, -4] source = 0 sink = 9 tasks = 4
create the graph and constraints
start_nodes.length.times do |i| min_cost_flow.add_arc_with_capacity_and_unit_cost( start_nodes[i], end_nodes[i], capacities[i], costs[i] ) end
supplies.length.times do |i| min_cost_flow.set_node_supply(i, supplies[i]) end
invoke the solver
if min_cost_flow.solve == :optimal puts “Total cost = #min_cost_flowmin_cost_flow.optimal_cost” puts min_cost_flow.num_arcs.times do |arc| if min_cost_flow.tail(arc) != source && min_cost_flow.head(arc) != sink if min_cost_flow.flow(arc) > 0 puts “Worker %d assigned to task %d. Cost = %d” % [ min_cost_flow.tail(arc), min_cost_flow.head(arc), min_cost_flow.unit_cost(arc) ] end end end else puts “There was an issue with the min cost flow input.” end ```
Scheduling
Employee Scheduling
```ruby # define the data num_nurses = 4 num_shifts = 3 num_days = 3 all_nurses = num_nurses.times.to_a all_shifts = num_shifts.times.to_a all_days = num_days.times.to_a
create the variables
model = ORTools::CpModel.new
shifts = {} all_nurses.each do |n| all_days.each do |d| all_shifts.each do |s| shifts[[n, d, s]] = model.new_bool_var(“shift_n%id%is%i” % [n, d, s]) end end end
assign nurses to shifts
all_days.each do |d| all_shifts.each do |s| model.add(model.sum(all_nurses.map { |n| shifts[[n, d, s]] }) == 1) end end
all_nurses.each do |n| all_days.each do |d| model.add(model.sum(all_shifts.map { |s| shifts[[n, d, s]] }) <= 1) end end
assign shifts evenly
min_shifts_per_nurse = (num_shifts * num_days) / num_nurses max_shifts_per_nurse = min_shifts_per_nurse + 1 all_nurses.each do |n| num_shifts_worked = model.sum(all_days.flat_map { |d| all_shifts.map { |s| shifts[[n, d, s]] } }) model.add(num_shifts_worked >= min_shifts_per_nurse) model.add(num_shifts_worked <= max_shifts_per_nurse) end
create a printer
class NursesPartialSolutionPrinter < ORTools::CpSolverSolutionCallback attr_reader :solution_count
def initialize(shifts, num_nurses, num_days, num_shifts, sols) super() @shifts = shifts @num_nurses = num_nurses @num_days = num_days @num_shifts = num_shifts @solutions = sols @solution_count = 0 end
def on_solution_callback if @solutions.include?(@solution_count) puts “Solution #@solution_count” @num_days.times do |d| puts “Day #d” @num_nurses.times do |n| working = false @num_shifts.times do |s| if value(@shifts[[n, d, s]]) working = true puts “ Nurse %i works shift %i” % [n, s] end end unless working puts “ Nurse #n does not work” end end end puts end @solution_count += 1 end end
call the solver and display the results
solver = ORTools::CpSolver.new a_few_solutions = 5.times.to_a solution_printer = NursesPartialSolutionPrinter.new( shifts, num_nurses, num_days, num_shifts, a_few_solutions ) solver.search_for_all_solutions(model, solution_printer)
puts puts “Statistics” puts “ - conflicts : %i” % solver.num_conflicts puts “ - branches : %i” % solver.num_branches puts “ - wall time : %f s” % solver.wall_time puts “ - solutions found : %i” % solution_printer.solution_count ```
The Job Shop Problem
```ruby # create the model model = ORTools::CpModel.new
jobs_data = [ [[0, 3], [1, 2], [2, 2]], [[0, 2], [2, 1], [1, 4]], [[1, 4], [2, 3]] ]
machines_count = 1 + jobs_data.flat_map { |job| job.map { |task| task[0] } }.max all_machines = machines_count.times.to_a
computes horizon dynamically as the sum of all durations
horizon = jobs_data.flat_map { |job| job.map { |task| task[1] } }.sum
creates job intervals and add to the corresponding machine lists
all_tasks = {} machine_to_intervals = Hash.new { |hash, key| hash[key] = [] }
jobs_data.each_with_index do |job, job_id| job.each_with_index do |task, task_id| machine = task[0] duration = task[1] suffix = “%i%i” % [job_id, task_id] start_var = model.new_int_var(0, horizon, “start” + suffix) duration_var = model.new_int_var(duration, duration, “duration” + suffix) end_var = model.new_int_var(0, horizon, “end” + suffix) interval_var = model.new_interval_var(start_var, duration_var, end_var, “interval” + suffix) all_tasks[[job_id, task_id]] = start_var, end: end_var, interval: interval_var machine_to_intervals[machine] « interval_var end end
create and add disjunctive constraints
all_machines.each do |machine| model.add_no_overlap(machine_to_intervals[machine]) end
precedences inside a job
jobs_data.each_with_index do |job, job_id| (job.size - 1).times do |task_id| model.add(all_tasks[[job_id, task_id + 1]][:start] >= all_tasks[[job_id, task_id]][:end]) end end
makespan objective
obj_var = model.new_int_var(0, horizon, “makespan”) model.add_max_equality(obj_var, jobs_data.map.with_index { |job, job_id| all_tasks[[job_id, job.size - 1]][:end] }) model.minimize(obj_var)
solve model
solver = ORTools::CpSolver.new status = solver.solve(model)
create one list of assigned tasks per machine
assigned_jobs = Hash.new { |hash, key| hash[key] = [] } jobs_data.each_with_index do |job, job_id| job.each_with_index do |task, task_id| machine = task[0] assigned_jobs[machine] « { start: solver.value(all_tasks[[job_id, task_id]][:start]), job: job_id, index: task_id, duration: task[1] } end end
create per machine output lines
output = String.new(“”) all_machines.each do |machine| # sort by starting time assigned_jobs[machine].sort_by! { |v| v[:start] } sol_line_tasks = “Machine #machine: “ sol_line = “ “
assigned_jobs[machine].each do |assigned_task| name = “job_%i_%i” % [assigned_task[:job], assigned_task[:index]] # add spaces to output to align columns sol_line_tasks += “%-10s” % name start = assigned_task[:start] duration = assigned_task[:duration] sol_tmp = “[%i,%i]” % [start, start + duration] # add spaces to output to align columns sol_line += “%-10s” % sol_tmp end
sol_line += “\n” sol_line_tasks += “\n” output += sol_line_tasks output += sol_line end
finally print the solution found
puts “Optimal Schedule Length: %i” % solver.objective_value puts output ```
Other Examples
Sudoku
```ruby # create the model model = ORTools::CpModel.new
cell_size = 3 line_size = cell_size**2 line = (0…line_size).to_a cell = (0…cell_size).to_a
initial_grid = [ [0, 6, 0, 0, 5, 0, 0, 2, 0], [0, 0, 0, 3, 0, 0, 0, 9, 0], [7, 0, 0, 6, 0, 0, 0, 1, 0], [0, 0, 6, 0, 3, 0, 4, 0, 0], [0, 0, 4, 0, 7, 0, 1, 0, 0], [0, 0, 5, 0, 9, 0, 8, 0, 0], [0, 4, 0, 0, 0, 1, 0, 0, 6], [0, 3, 0, 0, 0, 8, 0, 0, 0], [0, 2, 0, 0, 4, 0, 0, 5, 0] ]
grid = {} line.each do |i| line.each do |j| grid[[i, j]] = model.new_int_var(1, line_size, “grid %i %i” % [i, j]) end end
all different on rows
line.each do |i| model.add_all_different(line.map { |j| grid[[i, j]] }) end
all different on columns
line.each do |j| model.add_all_different(line.map { |i| grid[[i, j]] }) end
all different on cells
cell.each do |i| cell.each do |j| one_cell = [] cell.each do |di| cell.each do |dj| one_cell « grid[[i * cell_size + di, j * cell_size + dj]] end end model.add_all_different(one_cell) end end
initial values
line.each do |i| line.each do |j| if initial_grid[i][j] != 0 model.add(grid[[i, j]] == initial_grid[i][j]) end end end
solve and print solution
solver = ORTools::CpSolver.new status = solver.solve(model) if status == :optimal line.each do |i| p line.map { |j| solver.value(grid[[i, j]]) } end end ```
Wedding Seating Chart
```ruby # From # Meghan L. Bellows and J. D. Luc Peterson # “Finding an optimal seating chart for a wedding” # https://www.improbable.com/news/2012/Optimal-seating-chart.pdf # https://www.improbable.com/2012/02/12/finding-an-optimal-seating-chart-for-a-wedding # # Every year, millions of brides (not to mention their mothers, future # mothers-in-law, and occasionally grooms) struggle with one of the # most daunting tasks during the wedding-planning process: the # seating chart. The guest responses are in, banquet hall is booked, # menu choices have been made. You think the hard parts are over, # but you have yet to embark upon the biggest headache of them all. # In order to make this process easier, we present a mathematical # formulation that models the seating chart problem. This model can # be solved to find the optimal arrangement of guests at tables. # At the very least, it can provide a starting point and hopefully # minimize stress and arguments. # # Adapted from # https://github.com/google/or-tools/blob/stable/examples/python/wedding_optimal_chart_sat.py
Easy problem (from the paper)
# num_tables = 2 # table_capacity = 10 # min_known_neighbors = 1
Slightly harder problem (also from the paper)
num_tables = 5 table_capacity = 4 min_known_neighbors = 1
Connection matrix: who knows who, and how strong
# is the relation c = [ [1, 50, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], [50, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 50, 1, 1, 1, 1, 10, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 50, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 50, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 50, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 50, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 50, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 10, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 50, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 50, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1] ]
Names of the guests. B: Bride side, G: Groom side
names = [ “Deb (B)”, “John (B)”, “Martha (B)”, “Travis (B)”, “Allan (B)”, “Lois (B)”, “Jayne (B)”, “Brad (B)”, “Abby (B)”, “Mary Helen (G)”, “Lee (G)”, “Annika (G)”, “Carl (G)”, “Colin (G)”, “Shirley (G)”, “DeAnn (G)”, “Lori (G)” ]
num_guests = c.size
all_tables = num_tables.times.to_a all_guests = num_guests.times.to_a
create the cp model
model = ORTools::CpModel.new
decision variables
seats = {} all_tables.each do |t| all_guests.each do |g| seats[[t, g]] = model.new_bool_var(“guest %i seats on table %i” % [g, t]) end end
pairs = all_guests.combination(2)
colocated = {} pairs.each do |g1, g2| colocated[[g1, g2]] = model.new_bool_var(“guest %i seats with guest %i” % [g1, g2]) end
same_table = {} pairs.each do |g1, g2| all_tables.each do |t| same_table[[g1, g2, t]] = model.new_bool_var(“guest %i seats with guest %i on table %i” % [g1, g2, t]) end end
Objective
model.maximize(model.sum((num_guests - 1).times.flat_map { |g1| (g1 + 1).upto(num_guests - 1).select { |g2| c[g1][g2] > 0 }.map { |g2| colocated[[g1, g2]] * c[g1][g2] } }))
# Constraints
#
Everybody seats at one table.
all_guests.each do |g| model.add(model.sum(all_tables.map { |t| seats[[t, g]] }) == 1) end
Tables have a max capacity.
all_tables.each do |t| model.add(model.sum(all_guests.map { |g| seats[[t, g]] }) <= table_capacity) end
Link colocated with seats
pairs.each do |g1, g2| all_tables.each do |t| # Link same_table and seats. model.add_bool_or([seats[[t, g1]].not, seats[[t, g2]].not, same_table[[g1, g2, t]]]) model.add_implication(same_table[[g1, g2, t]], seats[[t, g1]]) model.add_implication(same_table[[g1, g2, t]], seats[[t, g2]]) end
# Link colocated and same_table. model.add(model.sum(all_tables.map { |t| same_table[[g1, g2, t]] }) == colocated[[g1, g2]]) end
Min known neighbors rule.
all_guests.each do |g| model.add( model.sum( (g + 1).upto(num_guests - 1). select { |g2| c[g][g2] > 0 }. product(all_tables). map { |g2, t| same_table[[g, g2, t]] } ) + model.sum( g.times. select { |g1| c[g1][g] > 0 }. product(all_tables). map { |g1, t| same_table[[g1, g, t]] } ) >= min_known_neighbors ) end
Symmetry breaking. First guest seats on the first table.
model.add(seats[[0, 0]] == 1)
Solve model
solver = ORTools::CpSolver.new solution_printer = WeddingChartPrinter.new(seats, names, num_tables, num_guests) solver.solve(model, solution_printer)
puts “Statistics” puts “ - conflicts : %i” % solver.num_conflicts puts “ - branches : %i” % solver.num_branches puts “ - wall time : %f s” % solver.wall_time puts “ - num solutions: %i” % solution_printer.num_solutions ```
Set Partitioning
```ruby # A set partitioning model of a wedding seating problem # Authors: Stuart Mitchell 2009
max_tables = 5 max_table_size = 4 guests = %w(A B C D E F G I J K L M N O P Q R)
Find the happiness of the table
# by calculating the maximum distance between the letters def happiness(table) (table[0].ord - table[-1].ord).abs end
create list of all possible tables
possible_tables = [] (1..max_table_size).each do |i| possible_tables += guests.combination(i).to_a end
solver = ORTools::Solver.new(“CBC”)
create a binary variable to state that a table setting is used
x = {} possible_tables.each do |table| x[table] = solver.int_var(0, 1, “table #“)”) end
| solver.minimize(possible_tables.sum { | table | x[table] * happiness(table) }) |
specify the maximum number of tables
solver.add(x.values.sum <= max_tables)
a guest must seated at one and only one table
guests.each do |guest| tables_with_guest = possible_tables.select { |table| table.include?(guest) } solver.add(tables_with_guest.sum { |table| x[table] } == 1) end
status = solver.solve
puts “The chosen tables are out of a total of %s:” % possible_tables.size possible_tables.each do |table| if x[table].solution_value == 1 p table end end ```
History
View the changelog
Contributing
Everyone is encouraged to help improve this project. Here are a few ways you can help:
- Report bugs
- Fix bugs and submit pull requests
- Write, clarify, or fix documentation
- Suggest or add new features
To get started with development:
sh
git clone https://github.com/ankane/or-tools-ruby.git
cd or-tools-ruby
bundle install
bundle exec rake compile
bundle exec rake test
Resources