Method: OpenC3::BinaryAccessor.read
- Defined in:
-
lib/openc3/accessors/binary_accessor.rb,
ext/openc3/ext/structure/structure.c
Reads binary data of any data type from a buffer
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
# File 'lib/openc3/accessors/binary_accessor.rb', line 146 def self.read(bit_offset, bit_size, data_type, buffer, endianness) given_bit_offset = bit_offset given_bit_size = bit_size bit_offset = check_bit_offset_and_size(:read, given_bit_offset, given_bit_size, data_type, buffer) # If passed a negative bit size with strings or blocks # recalculate based on the buffer length if (bit_size <= 0) && ((data_type == :STRING) || (data_type == :BLOCK)) bit_size = (buffer.length * 8) - bit_offset + bit_size if bit_size == 0 return "" elsif bit_size < 0 raise_buffer_error(:read, buffer, data_type, given_bit_offset, given_bit_size) end end result, lower_bound, upper_bound = check_bounds_and_buffer_size(bit_offset, bit_size, buffer.length, endianness, data_type) raise_buffer_error(:read, buffer, data_type, given_bit_offset, given_bit_size) unless result if (data_type == :STRING) || (data_type == :BLOCK) ####################################### # Handle :STRING and :BLOCK data types ####################################### if byte_aligned(bit_offset) if data_type == :STRING return buffer[lower_bound..upper_bound].unpack('Z*')[0] else return buffer[lower_bound..upper_bound].unpack('a*')[0] end else raise(ArgumentError, "bit_offset #{given_bit_offset} is not byte aligned for data_type #{data_type}") end elsif (data_type == :INT) || (data_type == :UINT) ################################### # Handle :INT and :UINT data types ################################### if byte_aligned(bit_offset) && even_bit_size(bit_size) if data_type == :INT ########################################################### # Handle byte-aligned 8, 16, 32, and 64 bit :INT ########################################################### case bit_size when 8 return buffer[lower_bound].unpack(PACK_8_BIT_INT)[0] when 16 if endianness == HOST_ENDIANNESS return buffer[lower_bound..upper_bound].unpack(PACK_NATIVE_16_BIT_INT)[0] else # endianness != HOST_ENDIANNESS temp = buffer[lower_bound..upper_bound].reverse return temp.unpack(PACK_NATIVE_16_BIT_INT)[0] end when 32 if endianness == HOST_ENDIANNESS return buffer[lower_bound..upper_bound].unpack(PACK_NATIVE_32_BIT_INT)[0] else # endianness != HOST_ENDIANNESS temp = buffer[lower_bound..upper_bound].reverse return temp.unpack(PACK_NATIVE_32_BIT_INT)[0] end when 64 if endianness == HOST_ENDIANNESS return buffer[lower_bound..upper_bound].unpack(PACK_NATIVE_64_BIT_INT)[0] else # endianness != HOST_ENDIANNESS temp = buffer[lower_bound..upper_bound].reverse return temp.unpack(PACK_NATIVE_64_BIT_INT)[0] end end else # data_type == :UINT ########################################################### # Handle byte-aligned 8, 16, 32, and 64 bit :UINT ########################################################### case bit_size when 8 return buffer.getbyte(lower_bound) when 16 if endianness == :BIG_ENDIAN return buffer[lower_bound..upper_bound].unpack(PACK_BIG_ENDIAN_16_BIT_UINT)[0] else # endianness == :LITTLE_ENDIAN return buffer[lower_bound..upper_bound].unpack(PACK_LITTLE_ENDIAN_16_BIT_UINT)[0] end when 32 if endianness == :BIG_ENDIAN return buffer[lower_bound..upper_bound].unpack(PACK_BIG_ENDIAN_32_BIT_UINT)[0] else # endianness == :LITTLE_ENDIAN return buffer[lower_bound..upper_bound].unpack(PACK_LITTLE_ENDIAN_32_BIT_UINT)[0] end when 64 if endianness == HOST_ENDIANNESS return buffer[lower_bound..upper_bound].unpack(PACK_NATIVE_64_BIT_UINT)[0] else # endianness != HOST_ENDIANNESS temp = buffer[lower_bound..upper_bound].reverse return temp.unpack(PACK_NATIVE_64_BIT_UINT)[0] end end end else ########################## # Handle :INT and :UINT Bitfields ########################## # Extract Data for Bitfield if endianness == :LITTLE_ENDIAN # Bitoffset always refers to the most significant bit of a bitfield num_bytes = (((bit_offset % 8) + bit_size - 1) / 8) + 1 upper_bound = bit_offset / 8 lower_bound = upper_bound - num_bytes + 1 if lower_bound < 0 raise(ArgumentError, "LITTLE_ENDIAN bitfield with bit_offset #{given_bit_offset} and bit_size #{given_bit_size} is invalid") end temp_data = buffer[lower_bound..upper_bound].reverse else temp_data = buffer[lower_bound..upper_bound] end # Determine temp upper bound temp_upper = upper_bound - lower_bound # Handle Bitfield start_bits = bit_offset % 8 start_mask = ~(0xFF << (8 - start_bits)) total_bits = (temp_upper + 1) * 8 right_shift = total_bits - start_bits - bit_size # Mask off unwanted bits at beginning temp = temp_data.getbyte(0) & start_mask if upper_bound > lower_bound # Combine bytes into a FixNum temp_data[1..temp_upper].each_byte { |temp_value| temp = temp << 8; temp = temp + temp_value } end # Shift off unwanted bits at end temp = temp >> right_shift if data_type == :INT # Convert to negative if necessary if (bit_size > 1) && (temp[bit_size - 1] == 1) temp = -((1 << bit_size) - temp) end end return temp end elsif data_type == :FLOAT ########################## # Handle :FLOAT data type ########################## if byte_aligned(bit_offset) case bit_size when 32 if endianness == :BIG_ENDIAN return buffer[lower_bound..upper_bound].unpack(PACK_BIG_ENDIAN_32_BIT_FLOAT)[0] else # endianness == :LITTLE_ENDIAN return buffer[lower_bound..upper_bound].unpack(PACK_LITTLE_ENDIAN_32_BIT_FLOAT)[0] end when 64 if endianness == :BIG_ENDIAN return buffer[lower_bound..upper_bound].unpack(PACK_BIG_ENDIAN_64_BIT_FLOAT)[0] else # endianness == :LITTLE_ENDIAN return buffer[lower_bound..upper_bound].unpack(PACK_LITTLE_ENDIAN_64_BIT_FLOAT)[0] end else raise(ArgumentError, "bit_size is #{given_bit_size} but must be 32 or 64 for data_type #{data_type}") end else raise(ArgumentError, "bit_offset #{given_bit_offset} is not byte aligned for data_type #{data_type}") end else ############################ # Handle Unknown data types ############################ raise(ArgumentError, "data_type #{data_type} is not recognized") end return return_value end |