Class: OpenTox::RegressionLeaveOneOutValidation
- Inherits:
-
LeaveOneOutValidation
- Object
- LeaveOneOutValidation
- OpenTox::RegressionLeaveOneOutValidation
- Defined in:
- lib/leave-one-out-validation.rb
Instance Method Summary collapse
Methods inherited from LeaveOneOutValidation
Instance Method Details
#correlation_plot ⇒ Object
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
# File 'lib/leave-one-out-validation.rb', line 174 def correlation_plot unless correlation_plot_id tmpfile = "/tmp/#{id.to_s}_correlation.svg" predicted_values = [] measured_values = [] predictions.each do |pred| pred[:database_activities].each do |activity| if pred[:value] predicted_values << pred[:value] measured_values << activity end end end attributes = Model::Lazar.find(self.model_id).attributes attributes.delete_if{|key,_| key.match(/_id|_at/) or ["_id","creator","name"].include? key} attributes = attributes.values.collect{|v| v.is_a?(String) ? v.sub(/OpenTox::/,'') : v}.join("\n") R.assign "measurement", measured_values R.assign "prediction", predicted_values R.eval "all = c(-log(measurement),-log(prediction))" R.eval "range = c(min(all), max(all))" R.eval "image = qplot(-log(prediction),-log(measurement),main='#{self.name}',asp=1,xlim=range, ylim=range)" R.eval "image = image + geom_abline(intercept=0, slope=1)" R.eval "ggsave(file='#{tmpfile}', plot=image)" file = Mongo::Grid::File.new(File.read(tmpfile), :filename => "#{self.id.to_s}_correlation_plot.svg") plot_id = $gridfs.insert_one(file) update(:correlation_plot_id => plot_id) end $gridfs.find_one(_id: correlation_plot_id).data end |
#statistics ⇒ Object
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
# File 'lib/leave-one-out-validation.rb', line 135 def statistics confidence_sum = 0 predicted_values = [] measured_values = [] predictions.each do |pred| pred[:database_activities].each do |activity| if pred[:value] predicted_values << pred[:value] measured_values << activity error = Math.log10(pred[:value])-Math.log10(activity) self.rmse += error**2 #self.weighted_rmse += pred[:confidence]*error**2 self.mae += error.abs #self.weighted_mae += pred[:confidence]*error.abs #confidence_sum += pred[:confidence] end end if pred[:database_activities].empty? warnings << "No training activities for #{Compound.find(compound_id).smiles} in training dataset #{model.training_dataset_id}." $logger.debug "No training activities for #{Compound.find(compound_id).smiles} in training dataset #{model.training_dataset_id}." end end R.assign "measurement", measured_values R.assign "prediction", predicted_values R.eval "r <- cor(-log(measurement),-log(prediction),use='complete')" r = R.eval("r").to_ruby self.mae = self.mae/predictions.size #self.weighted_mae = self.weighted_mae/confidence_sum self.rmse = Math.sqrt(self.rmse/predictions.size) #self.weighted_rmse = Math.sqrt(self.weighted_rmse/confidence_sum) self.r_squared = r**2 self.finished_at = Time.now save $logger.debug "R^2 #{r**2}" $logger.debug "RMSE #{rmse}" $logger.debug "MAE #{mae}" end |