25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
|
# File 'lib/experiment.rb', line 25
def report
report = {}
report[:name] = name
report[:experiment_id] = self.id.to_s
report[:results] = {}
parameters = []
dataset_ids.each do |dataset_id|
dataset_name = Dataset.find(dataset_id).name
report[:results][dataset_name] = {}
report[:results][dataset_name][:anova] = {}
report[:results][dataset_name][:data] = []
results[dataset_id.to_s].each do |result|
model = Model::Lazar.find(result[:model_id])
repeated_cv = RepeatedCrossValidation.find(result[:repeated_crossvalidation_id])
crossvalidations = repeated_cv.crossvalidations
if crossvalidations.first.is_a? ClassificationCrossValidation
parameters = [:accuracy,:true_rate,:predictivity]
elsif crossvalidations.first.is_a? RegressionCrossValidation
parameters = [:rmse,:mae,:r_squared]
end
summary = {}
[:neighbor_algorithm, :neighbor_algorithm_parameters, :prediction_algorithm].each do |key|
summary[key] = model[key]
end
summary[:nr_instances] = crossvalidations.first.nr_instances
summary[:nr_unpredicted] = crossvalidations.collect{|cv| cv.nr_unpredicted}
summary[:time] = crossvalidations.collect{|cv| cv.time}
parameters.each do |param|
summary[param] = crossvalidations.collect{|cv| cv.send(param)}
end
report[:results][dataset_name][:data] << summary
end
end
report[:results].each do |dataset,results|
([:time,:nr_unpredicted]+parameters).each do |param|
experiments = []
outcome = []
results[:data].each_with_index do |result,i|
result[param].each do |p|
experiments << i
p = nil if p.kind_of? Float and p.infinite? outcome << p
end
end
begin
R.assign "experiment_nr",experiments.collect{|i| "Experiment #{i}"}
R.eval "experiment_nr = factor(experiment_nr)"
R.assign "outcome", outcome
R.eval "data = data.frame(experiment_nr,outcome)"
R.eval "fit = aov(outcome ~ experiment_nr, data=data,na.action='na.omit')"
p_value = R.eval("summary(fit)[[1]][['Pr(>F)']][[1]]").to_ruby
rescue
p_value = nil
end
report[:results][dataset][:anova][param] = p_value
=begin
=end
end
end
report
end
|