Class: OpenTox::CrossValidation
Class Method Summary
collapse
Instance Method Summary
collapse
Class Method Details
.create(model, n = 10) ⇒ Object
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
|
# File 'lib/crossvalidation.rb', line 24
def self.create model, n=10
model.training_dataset.features.first.nominal? ? klass = ClassificationCrossValidation : klass = RegressionCrossValidation
bad_request_error "#{dataset.features.first} is neither nominal nor numeric." unless klass
cv = klass.new(
name: model.name,
model_id: model.id,
folds: n
)
cv.save nr_instances = 0
nr_unpredicted = 0
predictions = []
training_dataset = Dataset.find model.training_dataset_id
training_dataset.folds(n).each_with_index do |fold,fold_nr|
$logger.debug "Dataset #{training_dataset.name}: Fold #{fold_nr} started"
t = Time.now
validation = Validation.create(model, fold[0], fold[1],cv)
$logger.debug "Dataset #{training_dataset.name}, Fold #{fold_nr}: #{Time.now-t} seconds"
end
cv.validation_ids = Validation.where(:crossvalidation_id => cv.id).distinct(:_id)
cv.validations.each do |validation|
nr_instances += validation.nr_instances
nr_unpredicted += validation.nr_unpredicted
predictions += validation.predictions
end
cv.update_attributes(
nr_instances: nr_instances,
nr_unpredicted: nr_unpredicted,
predictions: predictions )
$logger.debug "Nr unpredicted: #{nr_unpredicted}"
cv.statistics
cv
end
|
Instance Method Details
20
21
22
|
# File 'lib/crossvalidation.rb', line 20
def model
Model::Lazar.find model_id
end
|
12
13
14
|
# File 'lib/crossvalidation.rb', line 12
def time
finished_at - created_at
end
|
#validations ⇒ Object
16
17
18
|
# File 'lib/crossvalidation.rb', line 16
def validations
validation_ids.collect{|vid| Validation.find vid}
end
|