Class: Google::Cloud::AIPlatform::V1::EmbedContentRequest

Inherits:
Object
  • Object
show all
Extended by:
Protobuf::MessageExts::ClassMethods
Includes:
Protobuf::MessageExts
Defined in:
proto_docs/google/cloud/aiplatform/v1/prediction_service.rb

Overview

Request message for PredictionService.EmbedContent.

Defined Under Namespace

Modules: EmbeddingTaskType

Instance Attribute Summary collapse

Instance Attribute Details

#auto_truncate::Boolean



696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
# File 'proto_docs/google/cloud/aiplatform/v1/prediction_service.rb', line 696

class EmbedContentRequest
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Represents a downstream task the embeddings will be used for.
  module EmbeddingTaskType
    # Unset value, which will default to one of the other enum values.
    UNSPECIFIED = 0

    # Specifies the given text is a query in a search/retrieval setting.
    RETRIEVAL_QUERY = 2

    # Specifies the given text is a document from the corpus being searched.
    RETRIEVAL_DOCUMENT = 3

    # Specifies the given text will be used for STS.
    SEMANTIC_SIMILARITY = 4

    # Specifies that the given text will be classified.
    CLASSIFICATION = 5

    # Specifies that the embeddings will be used for clustering.
    CLUSTERING = 6

    # Specifies that the embeddings will be used for question answering.
    QUESTION_ANSWERING = 7

    # Specifies that the embeddings will be used for fact verification.
    FACT_VERIFICATION = 8

    # Specifies that the embeddings will be used for code retrieval.
    CODE_RETRIEVAL_QUERY = 9
  end
end

#content::Google::Cloud::AIPlatform::V1::Content



696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
# File 'proto_docs/google/cloud/aiplatform/v1/prediction_service.rb', line 696

class EmbedContentRequest
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Represents a downstream task the embeddings will be used for.
  module EmbeddingTaskType
    # Unset value, which will default to one of the other enum values.
    UNSPECIFIED = 0

    # Specifies the given text is a query in a search/retrieval setting.
    RETRIEVAL_QUERY = 2

    # Specifies the given text is a document from the corpus being searched.
    RETRIEVAL_DOCUMENT = 3

    # Specifies the given text will be used for STS.
    SEMANTIC_SIMILARITY = 4

    # Specifies that the given text will be classified.
    CLASSIFICATION = 5

    # Specifies that the embeddings will be used for clustering.
    CLUSTERING = 6

    # Specifies that the embeddings will be used for question answering.
    QUESTION_ANSWERING = 7

    # Specifies that the embeddings will be used for fact verification.
    FACT_VERIFICATION = 8

    # Specifies that the embeddings will be used for code retrieval.
    CODE_RETRIEVAL_QUERY = 9
  end
end

#model::String



696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
# File 'proto_docs/google/cloud/aiplatform/v1/prediction_service.rb', line 696

class EmbedContentRequest
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Represents a downstream task the embeddings will be used for.
  module EmbeddingTaskType
    # Unset value, which will default to one of the other enum values.
    UNSPECIFIED = 0

    # Specifies the given text is a query in a search/retrieval setting.
    RETRIEVAL_QUERY = 2

    # Specifies the given text is a document from the corpus being searched.
    RETRIEVAL_DOCUMENT = 3

    # Specifies the given text will be used for STS.
    SEMANTIC_SIMILARITY = 4

    # Specifies that the given text will be classified.
    CLASSIFICATION = 5

    # Specifies that the embeddings will be used for clustering.
    CLUSTERING = 6

    # Specifies that the embeddings will be used for question answering.
    QUESTION_ANSWERING = 7

    # Specifies that the embeddings will be used for fact verification.
    FACT_VERIFICATION = 8

    # Specifies that the embeddings will be used for code retrieval.
    CODE_RETRIEVAL_QUERY = 9
  end
end

#output_dimensionality::Integer



696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
# File 'proto_docs/google/cloud/aiplatform/v1/prediction_service.rb', line 696

class EmbedContentRequest
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Represents a downstream task the embeddings will be used for.
  module EmbeddingTaskType
    # Unset value, which will default to one of the other enum values.
    UNSPECIFIED = 0

    # Specifies the given text is a query in a search/retrieval setting.
    RETRIEVAL_QUERY = 2

    # Specifies the given text is a document from the corpus being searched.
    RETRIEVAL_DOCUMENT = 3

    # Specifies the given text will be used for STS.
    SEMANTIC_SIMILARITY = 4

    # Specifies that the given text will be classified.
    CLASSIFICATION = 5

    # Specifies that the embeddings will be used for clustering.
    CLUSTERING = 6

    # Specifies that the embeddings will be used for question answering.
    QUESTION_ANSWERING = 7

    # Specifies that the embeddings will be used for fact verification.
    FACT_VERIFICATION = 8

    # Specifies that the embeddings will be used for code retrieval.
    CODE_RETRIEVAL_QUERY = 9
  end
end

#task_type::Google::Cloud::AIPlatform::V1::EmbedContentRequest::EmbeddingTaskType



696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
# File 'proto_docs/google/cloud/aiplatform/v1/prediction_service.rb', line 696

class EmbedContentRequest
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Represents a downstream task the embeddings will be used for.
  module EmbeddingTaskType
    # Unset value, which will default to one of the other enum values.
    UNSPECIFIED = 0

    # Specifies the given text is a query in a search/retrieval setting.
    RETRIEVAL_QUERY = 2

    # Specifies the given text is a document from the corpus being searched.
    RETRIEVAL_DOCUMENT = 3

    # Specifies the given text will be used for STS.
    SEMANTIC_SIMILARITY = 4

    # Specifies that the given text will be classified.
    CLASSIFICATION = 5

    # Specifies that the embeddings will be used for clustering.
    CLUSTERING = 6

    # Specifies that the embeddings will be used for question answering.
    QUESTION_ANSWERING = 7

    # Specifies that the embeddings will be used for fact verification.
    FACT_VERIFICATION = 8

    # Specifies that the embeddings will be used for code retrieval.
    CODE_RETRIEVAL_QUERY = 9
  end
end

#title::String



696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
# File 'proto_docs/google/cloud/aiplatform/v1/prediction_service.rb', line 696

class EmbedContentRequest
  include ::Google::Protobuf::MessageExts
  extend ::Google::Protobuf::MessageExts::ClassMethods

  # Represents a downstream task the embeddings will be used for.
  module EmbeddingTaskType
    # Unset value, which will default to one of the other enum values.
    UNSPECIFIED = 0

    # Specifies the given text is a query in a search/retrieval setting.
    RETRIEVAL_QUERY = 2

    # Specifies the given text is a document from the corpus being searched.
    RETRIEVAL_DOCUMENT = 3

    # Specifies the given text will be used for STS.
    SEMANTIC_SIMILARITY = 4

    # Specifies that the given text will be classified.
    CLASSIFICATION = 5

    # Specifies that the embeddings will be used for clustering.
    CLUSTERING = 6

    # Specifies that the embeddings will be used for question answering.
    QUESTION_ANSWERING = 7

    # Specifies that the embeddings will be used for fact verification.
    FACT_VERIFICATION = 8

    # Specifies that the embeddings will be used for code retrieval.
    CODE_RETRIEVAL_QUERY = 9
  end
end