Class: Date

Inherits:
Object
  • Object
show all
Includes:
Comparable
Defined in:
lib/date.rb,
date_core.c

Direct Known Subclasses

DateTime

Defined Under Namespace

Classes: Infinity

Constant Summary collapse

MONTHNAMES =

An array of stirng of full month name in English. The first element is nil.

mk_ary_of_str(13, monthnames)
ABBR_MONTHNAMES =

An array of string of abbreviated month name in English. The first element is nil.

mk_ary_of_str(13, abbr_monthnames)
DAYNAMES =

An array of string of full name of days of the week in English. The first is "Sunday".

mk_ary_of_str(7, daynames)
ABBR_DAYNAMES =

An array of string of abbreviated day name in English. The first is "Sun".

mk_ary_of_str(7, abbr_daynames)
ITALY =

The Julian day number of the day of calendar reform for Italy and some catholic countries.

INT2FIX(ITALY)
ENGLAND =

The Julian day number of the day of calendar reform for England and her colonies.

INT2FIX(ENGLAND)
JULIAN =

The Julian day number of the day of calendar reform for the proleptic Julian calendar

DBL2NUM(JULIAN)
GREGORIAN =

The Julian day number of the day of calendar reform for the proleptic Gregorian calendar

DBL2NUM(GREGORIAN)

Class Method Summary collapse

Instance Method Summary collapse

Class Method Details

._httpdate(string) ⇒ Hash

Returns a hash of parsed elements.

Returns:

  • (Hash)


4552
4553
4554
4555
4556
# File 'date_core.c', line 4552

static VALUE
date_s__httpdate(VALUE klass, VALUE str)
{
    return date__httpdate(str);
}

._iso8601(string) ⇒ Hash

Returns a hash of parsed elements.

Returns:

  • (Hash)


4375
4376
4377
4378
4379
# File 'date_core.c', line 4375

static VALUE
date_s__iso8601(VALUE klass, VALUE str)
{
    return date__iso8601(str);
}

._jisx0301(string) ⇒ Hash

Returns a hash of parsed elements.

Returns:

  • (Hash)


4597
4598
4599
4600
4601
# File 'date_core.c', line 4597

static VALUE
date_s__jisx0301(VALUE klass, VALUE str)
{
    return date__jisx0301(str);
}

._parse(string[, comp = true]) ⇒ Hash

Parses the given representation of date and time, and returns a hash of parsed elements.

If the optional second argument is true and the detected year is in the range "00" to "99", considers the year a 2-digit form and makes it full.

For example:

Date._parse('2001-02-03')	#=> {:year=>2001, :mon=>2, :mday=>3}

Returns:

  • (Hash)


4313
4314
4315
4316
4317
# File 'date_core.c', line 4313

static VALUE
date_s__parse(int argc, VALUE *argv, VALUE klass)
{
    return date_s__parse_internal(argc, argv, klass);
}

._rfc2822(string) ⇒ Hash ._rfc822(string) ⇒ Hash

Returns a hash of parsed elements.

Overloads:

  • ._rfc2822(string) ⇒ Hash

    Returns:

    • (Hash)
  • ._rfc822(string) ⇒ Hash

    Returns:

    • (Hash)


4507
4508
4509
4510
4511
# File 'date_core.c', line 4507

static VALUE
date_s__rfc2822(VALUE klass, VALUE str)
{
    return date__rfc2822(str);
}

._rfc3339(string) ⇒ Hash

Returns a hash of parsed elements.

Returns:

  • (Hash)


4420
4421
4422
4423
4424
# File 'date_core.c', line 4420

static VALUE
date_s__rfc3339(VALUE klass, VALUE str)
{
    return date__rfc3339(str);
}

._rfc2822(string) ⇒ Hash ._rfc822(string) ⇒ Hash

Returns a hash of parsed elements.

Overloads:

  • ._rfc2822(string) ⇒ Hash

    Returns:

    • (Hash)
  • ._rfc822(string) ⇒ Hash

    Returns:

    • (Hash)


4507
4508
4509
4510
4511
# File 'date_core.c', line 4507

static VALUE
date_s__rfc2822(VALUE klass, VALUE str)
{
    return date__rfc2822(str);
}

._strptime(string[, format = '%F']) ⇒ Hash

Parses the given representation of date and time with the given template, and returns a hash of parsed elements.

For example:

Date._strptime('2001-02-03', '%Y-%m-%d')

#=> :mon=>2, :mday=>3

See also strptime(3) and strftime.

Returns:

  • (Hash)


4217
4218
4219
4220
4221
# File 'date_core.c', line 4217

static VALUE
date_s__strptime(int argc, VALUE *argv, VALUE klass)
{
    return date_s__strptime_internal(argc, argv, klass, "%F");
}

._xmlschema(string) ⇒ Hash

Returns a hash of parsed elements.

Returns:

  • (Hash)


4463
4464
4465
4466
4467
# File 'date_core.c', line 4463

static VALUE
date_s__xmlschema(VALUE klass, VALUE str)
{
    return date__xmlschema(str);
}

.civil([year = -4712[, month=1[, mday=1[, start=Date::ITALY]]]]) ⇒ Object .new([year = -4712[, month=1[, mday=1[, start=Date::ITALY]]]]) ⇒ Object

Creates a date object denoting the given calendar date.

In this class, BCE years are counted astronomically. Thus, the year before the year 1 is the year zero, and the year preceding the year zero is the year -1. The month and the day of month should be a negative or a positive number (as a relative month/day from the end of year/month when negative). They should not be zero.

The last argument should be a Julian day number which denotes the day of calendar reform. Date::ITALY (2299161=1582-10-15), Date::ENGLAND (2361222=1752-09-14), Date::GREGORIAN (the proleptic Gregorian calendar) and Date::JULIAN (the proleptic Julian calendar) can be specified as a day of calendar reform.

For example:

Date.new(2001)		#=> #<Date: 2001-01-01 ...>
Date.new(2001,2,3)	#=> #<Date: 2001-02-03 ...>
Date.new(2001,2,-1)	#=> #<Date: 2001-02-28 ...>

See also jd.



3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
# File 'date_core.c', line 3360

static VALUE
date_s_civil(int argc, VALUE *argv, VALUE klass)
{
    VALUE vy, vm, vd, vsg, y, fr, fr2, ret;
    int m, d;
    double sg;

    rb_scan_args(argc, argv, "04", &vy, &vm, &vd, &vsg);

    y = INT2FIX(-4712);
    m = 1;
    d = 1;
    fr2 = INT2FIX(0);
    sg = DEFAULT_SG;

    switch (argc) {
      case 4:
	val2sg(vsg, sg);
      case 3:
	num2int_with_frac(d, positive_inf);
      case 2:
	m = NUM2INT(vm);
      case 1:
	y = vy;
    }

    if (guess_style(y, sg) < 0) {
	VALUE nth;
	int ry, rm, rd;

	if (!valid_gregorian_p(y, m, d,
			       &nth, &ry,
			       &rm, &rd))
	    rb_raise(rb_eArgError, "invalid date");

	ret = d_simple_new_internal(klass,
				    nth, 0,
				    sg,
				    ry, rm, rd,
				    HAVE_CIVIL);
    }
    else {
	VALUE nth;
	int ry, rm, rd, rjd, ns;

	if (!valid_civil_p(y, m, d, sg,
			   &nth, &ry,
			   &rm, &rd, &rjd,
			   &ns))
	    rb_raise(rb_eArgError, "invalid date");

	ret = d_simple_new_internal(klass,
				    nth, rjd,
				    sg,
				    ry, rm, rd,
				    HAVE_JD | HAVE_CIVIL);
    }
    add_frac();
    return ret;
}

.commercial([cwyear = -4712[, cweek=1[, cwday=1[, start=Date::ITALY]]]]) ⇒ Object

Creates a date object denoting the given week date.

The week and the day of week should be a negative or a positive number (as a relative week/day from the end of year/week when negative). They should not be zero.

For example:

Date.commercial(2001)	#=> #<Date: 2001-01-01 ...>
Date.commercial(2002)	#=> #<Date: 2001-12-31 ...>
Date.commercial(2001,5,6)	#=> #<Date: 2001-02-03 ...>

See also jd and new.



3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
# File 'date_core.c', line 3439

static VALUE
date_s_commercial(int argc, VALUE *argv, VALUE klass)
{
    VALUE vy, vw, vd, vsg, y, fr, fr2, ret;
    int w, d;
    double sg;

    rb_scan_args(argc, argv, "04", &vy, &vw, &vd, &vsg);

    y = INT2FIX(-4712);
    w = 1;
    d = 1;
    fr2 = INT2FIX(0);
    sg = DEFAULT_SG;

    switch (argc) {
      case 4:
	val2sg(vsg, sg);
      case 3:
	num2int_with_frac(d, positive_inf);
      case 2:
	w = NUM2INT(vw);
      case 1:
	y = vy;
    }

    {
	VALUE nth;
	int ry, rw, rd, rjd, ns;

	if (!valid_commercial_p(y, w, d, sg,
				&nth, &ry,
				&rw, &rd, &rjd,
				&ns))
	    rb_raise(rb_eArgError, "invalid date");

	ret = d_simple_new_internal(klass,
				    nth, rjd,
				    sg,
				    0, 0, 0,
				    HAVE_JD);
    }
    add_frac();
    return ret;
}

.gregorian_leap?(year) ⇒ Boolean .leap?(year) ⇒ Boolean

Returns true if the given year is a leap year of the proleptic Gregorian calendar.

For example:

Date.gregorian_leap?(1900)	#=> false
Date.gregorian_leap?(2000)	#=> true

Overloads:

  • .gregorian_leap?(year) ⇒ Boolean

    Returns:

    • (Boolean)
  • .leap?(year) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


2906
2907
2908
2909
2910
2911
2912
2913
2914
# File 'date_core.c', line 2906

static VALUE
date_s_gregorian_leap_p(VALUE klass, VALUE y)
{
    VALUE nth;
    int ry;

    decode_year(y, -1, &nth, &ry);
    return f_boolcast(c_gregorian_leap_p(ry));
}

.httpdate(string = 'Mon, 01 Jan -4712 00:00:00 GMT'[, start=ITALY]) ⇒ Object

Creates a new Date object by parsing from a string according to some RFC 2616 format.

For example:

Date.httpdate('Sat, 03 Feb 2001 00:00:00 GMT')

#=> #<Date: 2001-02-03 ...>



4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
# File 'date_core.c', line 4571

static VALUE
date_s_httpdate(int argc, VALUE *argv, VALUE klass)
{
    VALUE str, sg;

    rb_scan_args(argc, argv, "02", &str, &sg);

    switch (argc) {
      case 0:
	str = rb_str_new2("Mon, 01 Jan -4712 00:00:00 GMT");
      case 1:
	sg = INT2FIX(DEFAULT_SG);
    }

    {
	VALUE hash = date_s__httpdate(klass, str);
	return d_new_by_frags(klass, hash, sg);
    }
}

.iso8601(string = '-4712-01-01'[, start=ITALY]) ⇒ Object

Creates a new Date object by parsing from a string according to some typical ISO 8601 formats.

For example:

Date.iso8601('2001-02-03')	#=> #<Date: 2001-02-03 ...>
Date.iso8601('20010203')		#=> #<Date: 2001-02-03 ...>
Date.iso8601('2001-W05-6')	#=> #<Date: 2001-02-03 ...>


4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
# File 'date_core.c', line 4394

static VALUE
date_s_iso8601(int argc, VALUE *argv, VALUE klass)
{
    VALUE str, sg;

    rb_scan_args(argc, argv, "02", &str, &sg);

    switch (argc) {
      case 0:
	str = rb_str_new2("-4712-01-01");
      case 1:
	sg = INT2FIX(DEFAULT_SG);
    }

    {
	VALUE hash = date_s__iso8601(klass, str);
	return d_new_by_frags(klass, hash, sg);
    }
}

.jd([jd = 0[, start=Date::ITALY]]) ⇒ Object

Creates a date object denoting the given chronological Julian day number.

For example:

Date.jd(2451944)		#=> #<Date: 2001-02-03 ...>
Date.jd(2451945)		#=> #<Date: 2001-02-04 ...>
Date.jd(0)		#=> #<Date: -4712-01-01 ...>

See also new.



3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
# File 'date_core.c', line 3238

static VALUE
date_s_jd(int argc, VALUE *argv, VALUE klass)
{
    VALUE vjd, vsg, jd, fr, fr2, ret;
    double sg;

    rb_scan_args(argc, argv, "02", &vjd, &vsg);

    jd = INT2FIX(0);
    fr2 = INT2FIX(0);
    sg = DEFAULT_SG;

    switch (argc) {
      case 2:
	val2sg(vsg, sg);
      case 1:
	num2num_with_frac(jd, positive_inf);
    }

    {
	VALUE nth;
	int rjd;

	decode_jd(jd, &nth, &rjd);
	ret = d_simple_new_internal(klass,
				    nth, rjd,
				    sg,
				    0, 0, 0,
				    HAVE_JD);
    }
    add_frac();
    return ret;
}

.jisx0301(string = '-4712-01-01'[, start=ITALY]) ⇒ Object

Creates a new Date object by parsing from a string according to some typical JIS X 0301 formats.

For example:

Date.jisx0301('H13.02.03')		#=> #<Date: 2001-02-03 ...>


4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
# File 'date_core.c', line 4614

static VALUE
date_s_jisx0301(int argc, VALUE *argv, VALUE klass)
{
    VALUE str, sg;

    rb_scan_args(argc, argv, "02", &str, &sg);

    switch (argc) {
      case 0:
	str = rb_str_new2("-4712-01-01");
      case 1:
	sg = INT2FIX(DEFAULT_SG);
    }

    {
	VALUE hash = date_s__jisx0301(klass, str);
	return d_new_by_frags(klass, hash, sg);
    }
}

.julian_leap?(year) ⇒ Boolean

Returns true if the given year is a leap year of the proleptic Julian calendar.

For example:

Date.julian_leap?(1900)		#=> true
Date.julian_leap?(1901)		#=> false

Returns:

  • (Boolean)

Returns:

  • (Boolean)


2883
2884
2885
2886
2887
2888
2889
2890
2891
# File 'date_core.c', line 2883

static VALUE
date_s_julian_leap_p(VALUE klass, VALUE y)
{
    VALUE nth;
    int ry;

    decode_year(y, +1, &nth, &ry);
    return f_boolcast(c_julian_leap_p(ry));
}

.gregorian_leap?(year) ⇒ Boolean .leap?(year) ⇒ Boolean

Returns true if the given year is a leap year of the proleptic Gregorian calendar.

For example:

Date.gregorian_leap?(1900)	#=> false
Date.gregorian_leap?(2000)	#=> true

Overloads:

  • .gregorian_leap?(year) ⇒ Boolean

    Returns:

    • (Boolean)
  • .leap?(year) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


2906
2907
2908
2909
2910
2911
2912
2913
2914
# File 'date_core.c', line 2906

static VALUE
date_s_gregorian_leap_p(VALUE klass, VALUE y)
{
    VALUE nth;
    int ry;

    decode_year(y, -1, &nth, &ry);
    return f_boolcast(c_gregorian_leap_p(ry));
}

.civil([year = -4712[, month=1[, mday=1[, start=Date::ITALY]]]]) ⇒ Object .new([year = -4712[, month=1[, mday=1[, start=Date::ITALY]]]]) ⇒ Object

Creates a date object denoting the given calendar date.

In this class, BCE years are counted astronomically. Thus, the year before the year 1 is the year zero, and the year preceding the year zero is the year -1. The month and the day of month should be a negative or a positive number (as a relative month/day from the end of year/month when negative). They should not be zero.

The last argument should be a Julian day number which denotes the day of calendar reform. Date::ITALY (2299161=1582-10-15), Date::ENGLAND (2361222=1752-09-14), Date::GREGORIAN (the proleptic Gregorian calendar) and Date::JULIAN (the proleptic Julian calendar) can be specified as a day of calendar reform.

For example:

Date.new(2001)		#=> #<Date: 2001-01-01 ...>
Date.new(2001,2,3)	#=> #<Date: 2001-02-03 ...>
Date.new(2001,2,-1)	#=> #<Date: 2001-02-28 ...>

See also jd.



3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
# File 'date_core.c', line 3360

static VALUE
date_s_civil(int argc, VALUE *argv, VALUE klass)
{
    VALUE vy, vm, vd, vsg, y, fr, fr2, ret;
    int m, d;
    double sg;

    rb_scan_args(argc, argv, "04", &vy, &vm, &vd, &vsg);

    y = INT2FIX(-4712);
    m = 1;
    d = 1;
    fr2 = INT2FIX(0);
    sg = DEFAULT_SG;

    switch (argc) {
      case 4:
	val2sg(vsg, sg);
      case 3:
	num2int_with_frac(d, positive_inf);
      case 2:
	m = NUM2INT(vm);
      case 1:
	y = vy;
    }

    if (guess_style(y, sg) < 0) {
	VALUE nth;
	int ry, rm, rd;

	if (!valid_gregorian_p(y, m, d,
			       &nth, &ry,
			       &rm, &rd))
	    rb_raise(rb_eArgError, "invalid date");

	ret = d_simple_new_internal(klass,
				    nth, 0,
				    sg,
				    ry, rm, rd,
				    HAVE_CIVIL);
    }
    else {
	VALUE nth;
	int ry, rm, rd, rjd, ns;

	if (!valid_civil_p(y, m, d, sg,
			   &nth, &ry,
			   &rm, &rd, &rjd,
			   &ns))
	    rb_raise(rb_eArgError, "invalid date");

	ret = d_simple_new_internal(klass,
				    nth, rjd,
				    sg,
				    ry, rm, rd,
				    HAVE_JD | HAVE_CIVIL);
    }
    add_frac();
    return ret;
}

.ordinal([year = -4712[, yday=1[, start=Date::ITALY]]]) ⇒ Object

Creates a date object denoting the given ordinal date.

The day of year should be a negative or a positive number (as a relative day from the end of year when negative). It should not be zero.

For example:

Date.ordinal(2001)	#=> #<Date: 2001-01-01 ...>
Date.ordinal(2001,34)	#=> #<Date: 2001-02-03 ...>
Date.ordinal(2001,-1)	#=> #<Date: 2001-12-31 ...>

See also jd and new.



3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
# File 'date_core.c', line 3290

static VALUE
date_s_ordinal(int argc, VALUE *argv, VALUE klass)
{
    VALUE vy, vd, vsg, y, fr, fr2, ret;
    int d;
    double sg;

    rb_scan_args(argc, argv, "03", &vy, &vd, &vsg);

    y = INT2FIX(-4712);
    d = 1;
    fr2 = INT2FIX(0);
    sg = DEFAULT_SG;

    switch (argc) {
      case 3:
	val2sg(vsg, sg);
      case 2:
	num2int_with_frac(d, positive_inf);
      case 1:
	y = vy;
    }

    {
	VALUE nth;
	int ry, rd, rjd, ns;

	if (!valid_ordinal_p(y, d, sg,
			     &nth, &ry,
			     &rd, &rjd,
			     &ns))
	    rb_raise(rb_eArgError, "invalid date");

	ret = d_simple_new_internal(klass,
				     nth, rjd,
				     sg,
				     0, 0, 0,
				     HAVE_JD);
    }
    add_frac();
    return ret;
}

.parse(string = '-4712-01-01'[, comp=true[, start=ITALY]]) ⇒ Object

Parses the given representation of date and time, and creates a date object.

If the optional second argument is true and the detected year is in the range "00" to "99", considers the year a 2-digit form and makes it full.

For example:

Date.parse('2001-02-03')		#=> #<Date: 2001-02-03 ...>
Date.parse('20010203')		#=> #<Date: 2001-02-03 ...>
Date.parse('3rd Feb 2001')	#=> #<Date: 2001-02-03 ...>


4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
# File 'date_core.c', line 4336

static VALUE
date_s_parse(int argc, VALUE *argv, VALUE klass)
{
    VALUE str, comp, sg;

    rb_scan_args(argc, argv, "03", &str, &comp, &sg);

    switch (argc) {
      case 0:
	str = rb_str_new2("-4712-01-01");
      case 1:
	comp = Qtrue;
      case 2:
	sg = INT2FIX(DEFAULT_SG);
    }

    {
	VALUE argv2[2], hash;

	argv2[0] = str;
	argv2[1] = comp;
	hash = date_s__parse(2, argv2, klass);
	return d_new_by_frags(klass, hash, sg);
    }
}

.rfc2822(string = 'Mon, 1 Jan -4712 00:00:00 +0000'[, start=ITALY]) ⇒ Object .rfc822(string = 'Mon, 1 Jan -4712 00:00:00 +0000'[, start=ITALY]) ⇒ Object

Creates a new Date object by parsing from a string according to some typical RFC 2822 formats.

For example:

Date.rfc2822('Sat, 3 Feb 2001 00:00:00 +0000')

#=> #<Date: 2001-02-03 ...>



4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
# File 'date_core.c', line 4526

static VALUE
date_s_rfc2822(int argc, VALUE *argv, VALUE klass)
{
    VALUE str, sg;

    rb_scan_args(argc, argv, "02", &str, &sg);

    switch (argc) {
      case 0:
	str = rb_str_new2("Mon, 1 Jan -4712 00:00:00 +0000");
      case 1:
	sg = INT2FIX(DEFAULT_SG);
    }

    {
	VALUE hash = date_s__rfc2822(klass, str);
	return d_new_by_frags(klass, hash, sg);
    }
}

.rfc3339(string = '-4712-01-01T00:00:00+00:00'[, start=ITALY]) ⇒ Object

Creates a new Date object by parsing from a string according to some typical RFC 3339 formats.

For example:

Date.rfc3339('2001-02-03T04:05:06+07:00')	#=> #<Date: 2001-02-03 ...>


4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
# File 'date_core.c', line 4437

static VALUE
date_s_rfc3339(int argc, VALUE *argv, VALUE klass)
{
    VALUE str, sg;

    rb_scan_args(argc, argv, "02", &str, &sg);

    switch (argc) {
      case 0:
	str = rb_str_new2("-4712-01-01T00:00:00+00:00");
      case 1:
	sg = INT2FIX(DEFAULT_SG);
    }

    {
	VALUE hash = date_s__rfc3339(klass, str);
	return d_new_by_frags(klass, hash, sg);
    }
}

.rfc2822(string = 'Mon, 1 Jan -4712 00:00:00 +0000'[, start=ITALY]) ⇒ Object .rfc822(string = 'Mon, 1 Jan -4712 00:00:00 +0000'[, start=ITALY]) ⇒ Object

Creates a new Date object by parsing from a string according to some typical RFC 2822 formats.

For example:

Date.rfc2822('Sat, 3 Feb 2001 00:00:00 +0000')

#=> #<Date: 2001-02-03 ...>



4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
# File 'date_core.c', line 4526

static VALUE
date_s_rfc2822(int argc, VALUE *argv, VALUE klass)
{
    VALUE str, sg;

    rb_scan_args(argc, argv, "02", &str, &sg);

    switch (argc) {
      case 0:
	str = rb_str_new2("Mon, 1 Jan -4712 00:00:00 +0000");
      case 1:
	sg = INT2FIX(DEFAULT_SG);
    }

    {
	VALUE hash = date_s__rfc2822(klass, str);
	return d_new_by_frags(klass, hash, sg);
    }
}

.strptime([string = '-4712-01-01'[, format='%F'[, start=ITALY]]]) ⇒ Object

Parses the given representation of date and time with the given template, and creates a date object.

For example:

Date.strptime('2001-02-03', '%Y-%m-%d')	#=> #<Date: 2001-02-03 ...>
Date.strptime('03-02-2001', '%d-%m-%Y')	#=> #<Date: 2001-02-03 ...>
Date.strptime('2001-034', '%Y-%j')	#=> #<Date: 2001-02-03 ...>
Date.strptime('2001-W05-6', '%G-W%V-%u')	#=> #<Date: 2001-02-03 ...>
Date.strptime('2001 04 6', '%Y %U %w')	#=> #<Date: 2001-02-03 ...>
Date.strptime('2001 05 6', '%Y %W %u')	#=> #<Date: 2001-02-03 ...>
Date.strptime('sat3feb01', '%a%d%b%y')	#=> #<Date: 2001-02-03 ...>

See also strptime(3) and strftime.



4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
# File 'date_core.c', line 4242

static VALUE
date_s_strptime(int argc, VALUE *argv, VALUE klass)
{
    VALUE str, fmt, sg;

    rb_scan_args(argc, argv, "03", &str, &fmt, &sg);

    switch (argc) {
      case 0:
	str = rb_str_new2("-4712-01-01");
      case 1:
	fmt = rb_str_new2("%F");
      case 2:
	sg = INT2FIX(DEFAULT_SG);
    }

    {
	VALUE argv2[2], hash;

	argv2[0] = str;
	argv2[1] = fmt;
	hash = date_s__strptime(2, argv2, klass);
	return d_new_by_frags(klass, hash, sg);
    }
}

.today([start = Date::ITALY]) ⇒ Object

For example:

Date.today		#=> #<Date: 2011-06-11 ..>

Creates a date object denoting the present day.



3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
# File 'date_core.c', line 3617

static VALUE
date_s_today(int argc, VALUE *argv, VALUE klass)
{
    VALUE vsg, nth, ret;
    double sg;
    time_t t;
    struct tm tm;
    int y, ry, m, d;

    rb_scan_args(argc, argv, "01", &vsg);

    if (argc < 1)
	sg = DEFAULT_SG;
    else
	val2sg(vsg, sg);

    if (time(&t) == -1)
	rb_sys_fail("time");
    tzset();
    if (!localtime_r(&t, &tm))
	rb_sys_fail("localtime");

    y = tm.tm_year + 1900;
    m = tm.tm_mon + 1;
    d = tm.tm_mday;

    decode_year(INT2FIX(y), -1, &nth, &ry);

    ret = d_simple_new_internal(klass,
				nth, 0,
				GREGORIAN,
				ry, m, d,
				HAVE_CIVIL);
    {
	get_d1(ret);
	set_sg(dat, sg);
    }
    return ret;
}

.valid_civil?(year, month, mday[, start = Date::ITALY]) ⇒ Boolean .valid_date?(year, month, mday[, start = Date::ITALY]) ⇒ Boolean

Returns true if the given calendar date is valid, and false if not.

For example:

Date.valid_date?(2001,2,3)	#=> true
Date.valid_date?(2001,2,29)	#=> false

See also jd and civil.

Overloads:

  • .valid_civil?(year, month, mday[, start = Date::ITALY]) ⇒ Boolean

    Returns:

    • (Boolean)
  • .valid_date?(year, month, mday[, start = Date::ITALY]) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
# File 'date_core.c', line 2531

static VALUE
date_s_valid_civil_p(int argc, VALUE *argv, VALUE klass)
{
    VALUE vy, vm, vd, vsg;
    VALUE argv2[4];

    rb_scan_args(argc, argv, "31", &vy, &vm, &vd, &vsg);

    argv2[0] = vy;
    argv2[1] = vm;
    argv2[2] = vd;
    if (argc < 4)
	argv2[3] = INT2FIX(DEFAULT_SG);
    else
	argv2[3] = vsg;

    if (NIL_P(valid_civil_sub(4, argv2, klass, 0)))
	return Qfalse;
    return Qtrue;
}

.valid_commercial?(cwyear, cweek, cwday[, start = Date::ITALY]) ⇒ Boolean

Returns true if the given week date is valid, and false if not.

For example:

Date.valid_commercial?(2001,5,6)	#=> true
Date.valid_commercial?(2001,5,8)	#=> false

See also jd and commercial.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
# File 'date_core.c', line 2698

static VALUE
date_s_valid_commercial_p(int argc, VALUE *argv, VALUE klass)
{
    VALUE vy, vw, vd, vsg;
    VALUE argv2[4];

    rb_scan_args(argc, argv, "31", &vy, &vw, &vd, &vsg);

    argv2[0] = vy;
    argv2[1] = vw;
    argv2[2] = vd;
    if (argc < 4)
	argv2[3] = INT2FIX(DEFAULT_SG);
    else
	argv2[3] = vsg;

    if (NIL_P(valid_commercial_sub(4, argv2, klass, 0)))
	return Qfalse;
    return Qtrue;
}

.valid_civil?(year, month, mday[, start = Date::ITALY]) ⇒ Boolean .valid_date?(year, month, mday[, start = Date::ITALY]) ⇒ Boolean

Returns true if the given calendar date is valid, and false if not.

For example:

Date.valid_date?(2001,2,3)	#=> true
Date.valid_date?(2001,2,29)	#=> false

See also jd and civil.

Overloads:

  • .valid_civil?(year, month, mday[, start = Date::ITALY]) ⇒ Boolean

    Returns:

    • (Boolean)
  • .valid_date?(year, month, mday[, start = Date::ITALY]) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
# File 'date_core.c', line 2531

static VALUE
date_s_valid_civil_p(int argc, VALUE *argv, VALUE klass)
{
    VALUE vy, vm, vd, vsg;
    VALUE argv2[4];

    rb_scan_args(argc, argv, "31", &vy, &vm, &vd, &vsg);

    argv2[0] = vy;
    argv2[1] = vm;
    argv2[2] = vd;
    if (argc < 4)
	argv2[3] = INT2FIX(DEFAULT_SG);
    else
	argv2[3] = vsg;

    if (NIL_P(valid_civil_sub(4, argv2, klass, 0)))
	return Qfalse;
    return Qtrue;
}

.valid_jd?(jd[, start = Date::ITALY]) ⇒ Boolean

Just returns true. It's nonsense, but is for symmetry.

For example:

Date.valid_jd?(2451944)		#=> true

See also jd.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
# File 'date_core.c', line 2440

static VALUE
date_s_valid_jd_p(int argc, VALUE *argv, VALUE klass)
{
    VALUE vjd, vsg;
    VALUE argv2[2];

    rb_scan_args(argc, argv, "11", &vjd, &vsg);

    argv2[0] = vjd;
    if (argc < 2)
	argv2[1] = INT2FIX(DEFAULT_SG);
    else
	argv2[1] = vsg;

    if (NIL_P(valid_jd_sub(2, argv2, klass, 0)))
	return Qfalse;
    return Qtrue;
}

.valid_ordinal?(year, yday[, start = Date::ITALY]) ⇒ Boolean

Returns true if the given ordinal date is valid, and false if not.

For example:

Date.valid_ordinal?(2001,34)	#=> true
Date.valid_ordinal?(2001,366)	#=> false

See also jd and ordinal.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
# File 'date_core.c', line 2614

static VALUE
date_s_valid_ordinal_p(int argc, VALUE *argv, VALUE klass)
{
    VALUE vy, vd, vsg;
    VALUE argv2[3];

    rb_scan_args(argc, argv, "21", &vy, &vd, &vsg);

    argv2[0] = vy;
    argv2[1] = vd;
    if (argc < 3)
	argv2[2] = INT2FIX(DEFAULT_SG);
    else
	argv2[2] = vsg;

    if (NIL_P(valid_ordinal_sub(3, argv2, klass, 0)))
	return Qfalse;
    return Qtrue;
}

.xmlschema(string = '-4712-01-01'[, start=ITALY]) ⇒ Object

Creates a new Date object by parsing from a string according to some typical XML Schema formats.

For example:

Date.xmlschema('2001-02-03')	#=> #<Date: 2001-02-03 ...>


4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
# File 'date_core.c', line 4480

static VALUE
date_s_xmlschema(int argc, VALUE *argv, VALUE klass)
{
    VALUE str, sg;

    rb_scan_args(argc, argv, "02", &str, &sg);

    switch (argc) {
      case 0:
	str = rb_str_new2("-4712-01-01");
      case 1:
	sg = INT2FIX(DEFAULT_SG);
    }

    {
	VALUE hash = date_s__xmlschema(klass, str);
	return d_new_by_frags(klass, hash, sg);
    }
}

Instance Method Details

#+(other) ⇒ Object

Returns a date object pointing other days after self. The other should be a numeric value. If the other is flonum, assumes its precision is at most nanosecond.

For example:

Date.new(2001,2,3) + 1	#=> #<Date: 2001-02-04 ...>
DateTime.new(2001,2,3) + Rational(1,2)

#=> #<DateTime: 2001-02-03T12:00:00+00:00 ...>

DateTime.new(2001,2,3) + Rational(-1,2)

#=> #<DateTime: 2001-02-02T12:00:00+00:00 ...>

DateTime.jd(0,12) + DateTime.new(2001,2,3).ajd

#=> #<DateTime: 2001-02-03T00:00:00+00:00 ...>



5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
# File 'date_core.c', line 5549

static VALUE
d_lite_plus(VALUE self, VALUE other)
{
    get_d1(self);

    switch (TYPE(other)) {
      case T_FIXNUM:
	{
	    VALUE nth;
	    long t;
	    int jd;

	    nth = m_nth(dat);
	    t = FIX2LONG(other);
	    if (DIV(t, CM_PERIOD)) {
		nth = f_add(nth, INT2FIX(DIV(t, CM_PERIOD)));
		t = MOD(t, CM_PERIOD);
	    }

	    if (!t)
		jd = m_jd(dat);
	    else {
		jd = m_jd(dat) + (int)t;

		if (jd < 0) {
		    nth = f_sub(nth, INT2FIX(1));
		    jd += CM_PERIOD;
		}
		else if (jd >= CM_PERIOD) {
		    nth = f_add(nth, INT2FIX(1));
		    jd -= CM_PERIOD;
		}
	    }

	    if (simple_dat_p(dat))
		return d_simple_new_internal(rb_obj_class(self),
					     nth, jd,
					     dat->s.sg,
					     0, 0, 0,
					     (dat->s.flags | HAVE_JD) &
					     ~HAVE_CIVIL);
	    else
		return d_complex_new_internal(rb_obj_class(self),
					      nth, jd,
					      dat->c.df, dat->c.sf,
					      dat->c.of, dat->c.sg,
					      0, 0, 0,
#ifndef USE_PACK
					      dat->c.hour,
					      dat->c.min,
					      dat->c.sec,
#else
					      EX_HOUR(dat->c.pc),
					      EX_MIN(dat->c.pc),
					      EX_SEC(dat->c.pc),
#endif
					      (dat->c.flags | HAVE_JD) &
					      ~HAVE_CIVIL);
	}
	break;
      case T_BIGNUM:
	{
	    VALUE nth;
	    int jd, s;

	    if (f_positive_p(other))
		s = +1;
	    else {
		s = -1;
		other = f_negate(other);
	    }

	    nth = f_idiv(other, INT2FIX(CM_PERIOD));
	    jd = FIX2INT(f_mod(other, INT2FIX(CM_PERIOD)));

	    if (s < 0) {
		nth = f_negate(nth);
		jd = -jd;
	    }

	    if (!jd)
		jd = m_jd(dat);
	    else {
		jd = m_jd(dat) + jd;
		if (jd < 0) {
		    nth = f_sub(nth, INT2FIX(1));
		    jd += CM_PERIOD;
		}
		else if (jd >= CM_PERIOD) {
		    nth = f_add(nth, INT2FIX(1));
		    jd -= CM_PERIOD;
		}
	    }

	    if (f_zero_p(nth))
		nth = m_nth(dat);
	    else
		nth = f_add(m_nth(dat), nth);

	    if (simple_dat_p(dat))
		return d_simple_new_internal(rb_obj_class(self),
					     nth, jd,
					     dat->s.sg,
					     0, 0, 0,
					     (dat->s.flags | HAVE_JD) &
					     ~HAVE_CIVIL);
	    else
		return d_complex_new_internal(rb_obj_class(self),
					      nth, jd,
					      dat->c.df, dat->c.sf,
					      dat->c.of, dat->c.sg,
					      0, 0, 0,
#ifndef USE_PACK
					      dat->c.hour,
					      dat->c.min,
					      dat->c.sec,
#else
					      EX_HOUR(dat->c.pc),
					      EX_MIN(dat->c.pc),
					      EX_SEC(dat->c.pc),
#endif
					      (dat->c.flags | HAVE_JD) &
					      ~HAVE_CIVIL);
	}
	break;
      case T_FLOAT:
	{
	    double jd, o, tmp;
	    int s, df;
	    VALUE nth, sf;

	    o = RFLOAT_VALUE(other);

	    if (o > 0)
		s = +1;
	    else {
		s = -1;
		o = -o;
	    }

	    o = modf(o, &tmp);

	    if (!floor(tmp / CM_PERIOD)) {
		nth = INT2FIX(0);
		jd = (int)tmp;
	    }
	    else {
		double i, f;

		f = modf(tmp / CM_PERIOD, &i);
		nth = f_floor(DBL2NUM(i));
		jd = (int)(f * CM_PERIOD);
	    }

	    o *= DAY_IN_SECONDS;
	    o = modf(o, &tmp);
	    df = (int)tmp;
	    o *= SECOND_IN_NANOSECONDS;
	    sf = INT2FIX((int)round(o));

	    if (s < 0) {
		jd = -jd;
		df = -df;
		sf = f_negate(sf);
	    }

	    if (f_zero_p(sf))
		sf = m_sf(dat);
	    else {
		sf = f_add(m_sf(dat), sf);
		if (f_lt_p(sf, INT2FIX(0))) {
		    df -= 1;
		    sf = f_add(sf, INT2FIX(SECOND_IN_NANOSECONDS));
		}
		else if (f_ge_p(sf, INT2FIX(SECOND_IN_NANOSECONDS))) {
		    df += 1;
		    sf = f_sub(sf, INT2FIX(SECOND_IN_NANOSECONDS));
		}
	    }

	    if (!df)
		df = m_df(dat);
	    else {
		df = m_df(dat) + df;
		if (df < 0) {
		    jd -= 1;
		    df += DAY_IN_SECONDS;
		}
		else if (df >= DAY_IN_SECONDS) {
		    jd += 1;
		    df -= DAY_IN_SECONDS;
		}
	    }

	    if (!jd)
		jd = m_jd(dat);
	    else {
		jd = m_jd(dat) + jd;
		if (jd < 0) {
		    nth = f_sub(nth, INT2FIX(1));
		    jd += CM_PERIOD;
		}
		else if (jd >= CM_PERIOD) {
		    nth = f_add(nth, INT2FIX(1));
		    jd -= CM_PERIOD;
		}
	    }

	    if (f_zero_p(nth))
		nth = m_nth(dat);
	    else
		nth = f_add(m_nth(dat), nth);

	    if (!df && f_zero_p(sf) && !m_of(dat))
		return d_simple_new_internal(rb_obj_class(self),
					     nth, (int)jd,
					     m_sg(dat),
					     0, 0, 0,
					     (dat->s.flags | HAVE_JD) &
					     ~(HAVE_CIVIL | HAVE_TIME |
					       COMPLEX_DAT));
	    else
		return d_complex_new_internal(rb_obj_class(self),
					      nth, (int)jd,
					      df, sf,
					      m_of(dat), m_sg(dat),
					      0, 0, 0,
					      0, 0, 0,
					      (dat->c.flags |
					       HAVE_JD | HAVE_DF) &
					      ~(HAVE_CIVIL | HAVE_TIME));
	}
	break;
      default:
	if (!k_numeric_p(other))
	    rb_raise(rb_eTypeError, "expected numeric");
	other = f_to_r(other);
#ifdef CANONICALIZATION_FOR_MATHN
	if (!k_rational_p(other))
	    return d_lite_plus(self, other);
#endif
	/* fall through */
      case T_RATIONAL:
	{
	    VALUE nth, sf, t;
	    int jd, df, s;

	    if (wholenum_p(other))
		return d_lite_plus(self, RRATIONAL(other)->num);

	    if (f_positive_p(other))
		s = +1;
	    else {
		s = -1;
		other = f_negate(other);
	    }

	    nth = f_idiv(other, INT2FIX(CM_PERIOD));
	    t = f_mod(other, INT2FIX(CM_PERIOD));

	    jd = FIX2INT(f_idiv(t, INT2FIX(1)));
	    t = f_mod(t, INT2FIX(1));

	    t = f_mul(t, INT2FIX(DAY_IN_SECONDS));
	    df = FIX2INT(f_idiv(t, INT2FIX(1)));
	    t = f_mod(t, INT2FIX(1));

	    sf = f_mul(t, INT2FIX(SECOND_IN_NANOSECONDS));

	    if (s < 0) {
		nth = f_negate(nth);
		jd = -jd;
		df = -df;
		sf = f_negate(sf);
	    }

	    if (f_zero_p(sf))
		sf = m_sf(dat);
	    else {
		sf = f_add(m_sf(dat), sf);
		if (f_lt_p(sf, INT2FIX(0))) {
		    df -= 1;
		    sf = f_add(sf, INT2FIX(SECOND_IN_NANOSECONDS));
		}
		else if (f_ge_p(sf, INT2FIX(SECOND_IN_NANOSECONDS))) {
		    df += 1;
		    sf = f_sub(sf, INT2FIX(SECOND_IN_NANOSECONDS));
		}
	    }

	    if (!df)
		df = m_df(dat);
	    else {
		df = m_df(dat) + df;
		if (df < 0) {
		    jd -= 1;
		    df += DAY_IN_SECONDS;
		}
		else if (df >= DAY_IN_SECONDS) {
		    jd += 1;
		    df -= DAY_IN_SECONDS;
		}
	    }

	    if (!jd)
		jd = m_jd(dat);
	    else {
		jd = m_jd(dat) + jd;
		if (jd < 0) {
		    nth = f_sub(nth, INT2FIX(1));
		    jd += CM_PERIOD;
		}
		else if (jd >= CM_PERIOD) {
		    nth = f_add(nth, INT2FIX(1));
		    jd -= CM_PERIOD;
		}
	    }

	    if (f_zero_p(nth))
		nth = m_nth(dat);
	    else
		nth = f_add(m_nth(dat), nth);

	    if (!df && f_zero_p(sf) && !m_of(dat))
		return d_simple_new_internal(rb_obj_class(self),
					     nth, jd,
					     m_sg(dat),
					     0, 0, 0,
					     (dat->s.flags | HAVE_JD) &
					     ~(HAVE_CIVIL | HAVE_TIME |
					       COMPLEX_DAT));
	    else
		return d_complex_new_internal(rb_obj_class(self),
					      nth, jd,
					      df, sf,
					      m_of(dat), m_sg(dat),
					      0, 0, 0,
					      0, 0, 0,
					      (dat->c.flags |
					       HAVE_JD | HAVE_DF) &
					      ~(HAVE_CIVIL | HAVE_TIME));
	}
	break;
    }
}

#-(other) ⇒ Object

Returns the difference between the two dates if the other is a date object. If the other is a numeric value, returns a date object pointing other days before self. If the other is flonum, assumes its precision is at most nanosecond.

For example:

Date.new(2001,2,3) - 1	#=> #<Date: 2001-02-02 ...>
DateTime.new(2001,2,3) - Rational(1,2)

#=> #<DateTime: 2001-02-02T12:00:00+00:00 ...>

Date.new(2001,2,3) - Date.new(2001)

#=> (33/1)

DateTime.new(2001,2,3) - DateTime.new(2001,2,2,12)

#=> (1/2)



5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
# File 'date_core.c', line 5973

static VALUE
d_lite_minus(VALUE self, VALUE other)
{
    if (k_date_p(other))
	return minus_dd(self, other);

    switch (TYPE(other)) {
      case T_FIXNUM:
	return d_lite_plus(self, LONG2NUM(-FIX2LONG(other)));
      case T_FLOAT:
	return d_lite_plus(self, DBL2NUM(-RFLOAT_VALUE(other)));
      default:
	if (!k_numeric_p(other))
	    rb_raise(rb_eTypeError, "expected numeric");
	/* fall through */
      case T_BIGNUM:
      case T_RATIONAL:
	return d_lite_plus(self, f_negate(other));
    }
}

#<<(n) ⇒ Object

Returns a date object pointing n months before self. The n should be a numeric value.

For example:

Date.new(2001,2,3) << 1	#=> #<Date: 2001-01-03 ...>
Date.new(2001,1,31) << 11	#=> #<Date: 2000-02-29 ...>
Date.new(2001,2,3) << -1	#=> #<Date: 2001-03-03 ...>


6105
6106
6107
6108
6109
# File 'date_core.c', line 6105

static VALUE
d_lite_lshift(VALUE self, VALUE other)
{
    return d_lite_rshift(self, f_negate(other));
}

#<=>(other) ⇒ -1, ...

Compares the two dates and returns -1, zero, 1 or nil. The other should be a date object or a numeric value as an astronomical Julian day number.

For example:

Date.new(2001,2,3) <=> Date.new(2001,2,4)	#=> -1
Date.new(2001,2,3) <=> Date.new(2001,2,3)	#=> 0
Date.new(2001,2,3) <=> Date.new(2001,2,2)	#=> 1
Date.new(2001,2,3) <=> Object.new		#=> nil
Date.new(2001,2,3) <=> Rational(4903887,2)#=> 0

See also Comparable.

Returns:

  • (-1, 0, +1, nil)


6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
# File 'date_core.c', line 6364

static VALUE
d_lite_cmp(VALUE self, VALUE other)
{
    if (!k_date_p(other))
	return cmp_gen(self, other);

    {
	get_d2(self, other);

	if (!(simple_dat_p(adat) && simple_dat_p(bdat) &&
	      m_gregorian_p(adat) == m_gregorian_p(bdat)))
	    return cmp_dd(self, other);

	if (have_jd_p(adat) &&
	    have_jd_p(bdat)) {
	    VALUE a_nth, b_nth;
	    int a_jd, b_jd;

	    a_nth = m_nth(adat);
	    b_nth = m_nth(bdat);
	    if (f_eqeq_p(a_nth, b_nth)) {
		a_jd = m_jd(adat);
		b_jd = m_jd(bdat);
		if (a_jd == b_jd) {
		    return INT2FIX(0);
		}
		else if (a_jd < b_jd) {
		    return INT2FIX(-1);
		}
		else {
		    return INT2FIX(1);
		}
	    }
	    else if (a_nth < b_nth) {
		return INT2FIX(-1);
	    }
	    else {
		return INT2FIX(1);
	    }
	}
	else {
#ifndef USE_PACK
	    VALUE a_nth, b_nth;
	    int a_year, b_year,
		a_mon, b_mon,
		a_mday, b_mday;
#else
	    VALUE a_nth, b_nth;
	    int a_year, b_year,
		a_pd, b_pd;
#endif

	    a_nth = m_nth(adat);
	    b_nth = m_nth(bdat);
	    if (f_eqeq_p(a_nth, b_nth)) {
		a_year = m_year(adat);
		b_year = m_year(bdat);
		if (a_year == b_year) {
#ifndef USE_PACK
		    a_mon = m_mon(adat);
		    b_mon = m_mon(bdat);
		    if (a_mon == b_mon) {
			a_mday = m_mday(adat);
			b_mday = m_mday(bdat);
			if (a_mday == b_mday) {
			    return INT2FIX(0);
			}
			else if (a_mday < b_mday) {
			    return INT2FIX(-1);
			}
			else {
			    return INT2FIX(1);
			}
		    }
		    else if (a_mon < b_mon) {
			return INT2FIX(-1);
		    }
		    else {
			return INT2FIX(1);
		    }
#else
		    a_pd = m_pc(adat);
		    b_pd = m_pc(bdat);
		    if (a_pd == b_pd) {
			return INT2FIX(0);
		    }
		    else if (a_pd < b_pd) {
			return INT2FIX(-1);
		    }
		    else {
			return INT2FIX(1);
		    }
#endif
		}
		else if (a_year < b_year) {
		    return INT2FIX(-1);
		}
		else {
		    return INT2FIX(1);
		}
	    }
	    else if (f_lt_p(a_nth, b_nth)) {
		return INT2FIX(-1);
	    }
	    else {
		return INT2FIX(1);
	    }
	}
    }
}

#===(other) ⇒ Boolean

Returns true if they are the same day.

For example:

Date.new(2001,2,3) === Date.new(2001,2,3)

#=> true

Date.new(2001,2,3) === Date.new(2001,2,4)

#=> false

DateTime.new(2001,2,3) === DateTime.new(2001,2,3,12)

#=> true

DateTime.new(2001,2,3) === DateTime.new(2001,2,3,0,0,0,'+24:00')

#=> true

DateTime.new(2001,2,3) === DateTime.new(2001,2,4,0,0,0,'+24:00')

#=> false

Returns:

  • (Boolean)


6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
# File 'date_core.c', line 6506

static VALUE
d_lite_equal(VALUE self, VALUE other)
{
    if (!k_date_p(other))
	return equal_gen(self, other);

    {
	get_d2(self, other);

	if (!(m_gregorian_p(adat) == m_gregorian_p(bdat)))
	    return equal_gen(self, other);

	if (have_jd_p(adat) &&
	    have_jd_p(bdat)) {
	    VALUE a_nth, b_nth;
	    int a_jd, b_jd;

	    a_nth = m_nth(adat);
	    b_nth = m_nth(bdat);
	    a_jd = m_local_jd(adat);
	    b_jd = m_local_jd(bdat);
	    if (f_eqeq_p(a_nth, b_nth) &&
		a_jd == b_jd)
		return Qtrue;
	    return Qfalse;
	}
	else {
#ifndef USE_PACK
	    VALUE a_nth, b_nth;
	    int a_year, b_year,
		a_mon, b_mon,
		a_mday, b_mday;
#else
	    VALUE a_nth, b_nth;
	    int a_year, b_year,
		a_pd, b_pd;
#endif

	    a_nth = m_nth(adat);
	    b_nth = m_nth(bdat);
	    if (f_eqeq_p(a_nth, b_nth)) {
		a_year = m_year(adat);
		b_year = m_year(bdat);
		if (a_year == b_year) {
#ifndef USE_PACK
		    a_mon = m_mon(adat);
		    b_mon = m_mon(bdat);
		    if (a_mon == b_mon) {
			a_mday = m_mday(adat);
			b_mday = m_mday(bdat);
			if (a_mday == b_mday)
			    return Qtrue;
		    }
#else
		    /* mon and mday only */
		    a_pd = (m_pc(adat) >> MDAY_SHIFT);
		    b_pd = (m_pc(bdat) >> MDAY_SHIFT);
		    if (a_pd == b_pd) {
			return Qtrue;
		    }
#endif
		}
	    }
	    return Qfalse;
	}
    }
}

#>>(n) ⇒ Object

Returns a date object pointing n months after self. The n should be a numeric value.

For example:

Date.new(2001,2,3) >> 1	#=> #<Date: 2001-03-03 ...>
Date.new(2001,1,31) >> 1	#=> #<Date: 2001-02-28 ...>
Date.new(2001,2,3) >> -2	#=> #<Date: 2000-12-03 ...>


6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
# File 'date_core.c', line 6053

static VALUE
d_lite_rshift(VALUE self, VALUE other)
{
    VALUE t, y, nth, rjd2;
    int m, d, rjd;
    double sg;

    get_d1(self);
    t = f_add3(f_mul(m_real_year(dat), INT2FIX(12)),
	       INT2FIX(m_mon(dat) - 1),
	       other);
    if (FIXNUM_P(t)) {
	long it = FIX2LONG(t);
	y = LONG2NUM(DIV(it, 12));
	it = MOD(it, 12);
	m = (int)it + 1;
    }
    else {
	y = f_idiv(t, INT2FIX(12));
	t = f_mod(t, INT2FIX(12));
	m = FIX2INT(t) + 1;
    }
    d = m_mday(dat);
    sg = m_sg(dat);

    while (1) {
	int ry, rm, rd, ns;

	if (valid_civil_p(y, m, d, sg,
			  &nth, &ry,
			  &rm, &rd, &rjd, &ns))
	    break;
	if (--d < 1)
	    rb_raise(rb_eArgError, "invalid date");
    }
    encode_jd(nth, rjd, &rjd2);
    return d_lite_plus(self, f_sub(rjd2, m_real_local_jd(dat)));
}

#ajdObject

Returns the astronomical Julian day number. This is a fractional number, which is not adjusted by the offset.

For example:

DateTime.new(2001,2,3,4,5,6,'+7').ajd	#=> (11769328217/4800)
DateTime.new(2001,2,2,14,5,6,'-7').ajd	#=> (11769328217/4800)


4802
4803
4804
4805
4806
4807
# File 'date_core.c', line 4802

static VALUE
d_lite_ajd(VALUE self)
{
    get_d1(self);
    return m_ajd(dat);
}

#amjdObject

Returns the astronomical modified Julian day number. This is a fractional number, which is not adjusted by the offset.

For example:

DateTime.new(2001,2,3,4,5,6,'+7').amjd	#=> (249325817/4800)
DateTime.new(2001,2,2,14,5,6,'-7').amjd	#=> (249325817/4800)


4821
4822
4823
4824
4825
4826
# File 'date_core.c', line 4821

static VALUE
d_lite_amjd(VALUE self)
{
    get_d1(self);
    return m_amjd(dat);
}

#asctimeString #ctimeString

Returns a string in asctime(3) format (but without "n0" at the end). This method is equivalent to strftime('%c').

See also asctime(3) or ctime(3).

Overloads:

  • #asctimeString

    Returns:

    • (String)
  • #ctimeString

    Returns:

    • (String)


7115
7116
7117
7118
7119
# File 'date_core.c', line 7115

static VALUE
d_lite_asctime(VALUE self)
{
    return strftimev("%a %b %e %H:%M:%S %Y", self, set_tmx);
}

#asctimeString #ctimeString

Returns a string in asctime(3) format (but without "n0" at the end). This method is equivalent to strftime('%c').

See also asctime(3) or ctime(3).

Overloads:

  • #asctimeString

    Returns:

    • (String)
  • #ctimeString

    Returns:

    • (String)


7115
7116
7117
7118
7119
# File 'date_core.c', line 7115

static VALUE
d_lite_asctime(VALUE self)
{
    return strftimev("%a %b %e %H:%M:%S %Y", self, set_tmx);
}

#cwdayFixnum

Returns the day of calendar week (1-7, Monday is 1).

For example:

Date.new(2001,2,3).cwday		#=> 6

Returns:

  • (Fixnum)


5019
5020
5021
5022
5023
5024
# File 'date_core.c', line 5019

static VALUE
d_lite_cwday(VALUE self)
{
    get_d1(self);
    return INT2FIX(m_cwday(dat));
}

#cweekFixnum

Returns the calendar week number (1-53).

For example:

Date.new(2001,2,3).cweek		#=> 5

Returns:

  • (Fixnum)


5002
5003
5004
5005
5006
5007
# File 'date_core.c', line 5002

static VALUE
d_lite_cweek(VALUE self)
{
    get_d1(self);
    return INT2FIX(m_cweek(dat));
}

#cwyearInteger

Returns the calendar week based year.

For example:

Date.new(2001,2,3).cwyear		#=> 2001
Date.new(2000,1,1).cwyear		#=> 1999

Returns:

  • (Integer)


4985
4986
4987
4988
4989
4990
# File 'date_core.c', line 4985

static VALUE
d_lite_cwyear(VALUE self)
{
    get_d1(self);
    return m_real_cwyear(dat);
}

#mdayFixnum #dayFixnum

Returns the day of the month (1-31).

For example:

Date.new(2001,2,3).mday		#=> 3

Overloads:

  • #mdayFixnum

    Returns:

    • (Fixnum)
  • #dayFixnum

    Returns:

    • (Fixnum)


4948
4949
4950
4951
4952
4953
# File 'date_core.c', line 4948

static VALUE
d_lite_mday(VALUE self)
{
    get_d1(self);
    return INT2FIX(m_mday(dat));
}

#day_fractionObject

Returns the fractional part of the day.

For example:

DateTime.new(2001,2,3,12).day_fraction	#=> (1/2)


4965
4966
4967
4968
4969
4970
4971
4972
# File 'date_core.c', line 4965

static VALUE
d_lite_day_fraction(VALUE self)
{
    get_d1(self);
    if (simple_dat_p(dat))
	return INT2FIX(0);
    return m_fr(dat);
}

#downto(min) ⇒ Object #downto(min) {|date| ... } ⇒ self

This method is equivalent to step(min, -1){|date| ...}.

Overloads:

  • #downto(min) {|date| ... } ⇒ self

    Yields:

    • (date)

    Returns:

    • (self)


6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
# File 'date_core.c', line 6264

static VALUE
d_lite_downto(VALUE self, VALUE min)
{
    VALUE date;

    RETURN_ENUMERATOR(self, 1, &min);

    date = self;
    while (FIX2INT(d_lite_cmp(date, min)) >= 0) {
	rb_yield(date);
	date = d_lite_plus(date, INT2FIX(-1));
    }
    return self;
}

#englandObject

This method is equivalent to new_start(Date::ENGLAND).



5453
5454
5455
5456
5457
# File 'date_core.c', line 5453

static VALUE
d_lite_england(VALUE self)
{
    return dup_obj_with_new_start(self, ENGLAND);
}

#eql?Boolean

:nodoc:

Returns:

  • (Boolean)


6575
6576
6577
6578
6579
6580
6581
# File 'date_core.c', line 6575

static VALUE
d_lite_eql_p(VALUE self, VALUE other)
{
    if (!k_date_p(other))
	return Qfalse;
    return f_zero_p(d_lite_cmp(self, other));
}

#friday?Boolean

Returns true if the date is Friday.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5130
5131
5132
5133
5134
5135
# File 'date_core.c', line 5130

static VALUE
d_lite_friday_p(VALUE self)
{
    get_d1(self);
    return f_boolcast(m_wday(dat) == 5);
}

#gregorianObject

This method is equivalent to new_start(Date::GREGORIAN).



5477
5478
5479
5480
5481
# File 'date_core.c', line 5477

static VALUE
d_lite_gregorian(VALUE self)
{
    return dup_obj_with_new_start(self, GREGORIAN);
}

#gregorian?Boolean

Retunrs true if the date is on or after the day of calendar reform.

For example:

Date.new(1582,10,15).gregorian?		#=> true
(Date.new(1582,10,15) - 1).gregorian?	#=> false

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5304
5305
5306
5307
5308
5309
# File 'date_core.c', line 5304

static VALUE
d_lite_gregorian_p(VALUE self)
{
    get_d1(self);
    return f_boolcast(m_gregorian_p(dat));
}

#hashObject

:nodoc:



6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
# File 'date_core.c', line 6584

static VALUE
d_lite_hash(VALUE self)
{
    st_index_t v, h[4];

    get_d1(self);
    h[0] = m_nth(dat);
    h[1] = m_jd(dat);
    h[2] = m_df(dat);
    h[3] = m_sf(dat);
    v = rb_memhash(h, sizeof(h));
    return LONG2FIX(v);
}

#httpdateString

This method is equivalent to strftime('%a, %d %b %Y %T GMT'). See also RFC 2616.

Returns:

  • (String)


7166
7167
7168
7169
7170
7171
# File 'date_core.c', line 7166

static VALUE
d_lite_httpdate(VALUE self)
{
    volatile VALUE dup = dup_obj_with_new_offset(self, 0);
    return strftimev("%a, %d %b %Y %T GMT", dup, set_tmx);
}

#initialize_copyObject

:nodoc:



4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
# File 'date_core.c', line 4747

static VALUE
d_lite_initialize_copy(VALUE copy, VALUE date)
{
    if (copy == date)
	return copy;
    {
	get_d2(copy, date);
	if (simple_dat_p(bdat)) {
	    adat->s = bdat->s;
	    adat->s.flags &= ~COMPLEX_DAT;
	}
	else {
	    if (!complex_dat_p(adat))
		rb_raise(rb_eArgError,
			 "cannot load complex into simple");

	    adat->c = bdat->c;
	    adat->c.flags |= COMPLEX_DAT;
	}
    }
    return copy;
}

#inspectString

Returns the value as a string for inspection.

For example:

Date.new(2001,2,3).inspect

#=> "#<Date: 2001-02-03 ((2451944j,0s,0n),+0s,2299161j)>"

DateTime.new(2001,2,3,4,5,6,'-7').inspect

#=> "#<DateTime: 2001-02-03T04:05:06-07:00 ((2451944j,39906s,0n),-25200s,2299161j)>"

Returns:

  • (String)


6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
# File 'date_core.c', line 6722

static VALUE
d_lite_inspect(VALUE self)
{
    get_d1(self);
    {
	VALUE to_s;

	RB_GC_GUARD(to_s) = f_to_s(self);
	return mk_inspect(dat, rb_obj_classname(self), RSTRING_PTR(to_s));
    }
}

#iso8601String #xmlschemaString

This method is equivalent to strftime('%F').

Overloads:

  • #iso8601String

    Returns:

    • (String)
  • #xmlschemaString

    Returns:

    • (String)


7128
7129
7130
7131
7132
# File 'date_core.c', line 7128

static VALUE
d_lite_iso8601(VALUE self)
{
    return strftimev("%Y-%m-%d", self, set_tmx);
}

#italyObject

This method is equivalent to new_start(Date::ITALY).



5441
5442
5443
5444
5445
# File 'date_core.c', line 5441

static VALUE
d_lite_italy(VALUE self)
{
    return dup_obj_with_new_start(self, ITALY);
}

#jdInteger

Returns the Julian day number. This is a whole number, which is adjusted by the offset as the local time.

For example:

DateTime.new(2001,2,3,4,5,6,'+7').jd	#=> 2451944
DateTime.new(2001,2,3,4,5,6,'-7').jd	#=> 2451944

Returns:

  • (Integer)


4840
4841
4842
4843
4844
4845
# File 'date_core.c', line 4840

static VALUE
d_lite_jd(VALUE self)
{
    get_d1(self);
    return m_real_local_jd(dat);
}

#jisx0301String

Returns a string in a JIS X 0301 format.

For example:

Date.new(2001,2,3).jisx0301	#=> "H13.02.03"

Returns:

  • (String)


7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
# File 'date_core.c', line 7209

static VALUE
d_lite_jisx0301(VALUE self)
{
    VALUE s;

    get_d1(self);
    s = jisx0301_date(m_real_local_jd(dat),
		      m_real_year(dat));
    return strftimev(RSTRING_PTR(s), self, set_tmx);
}

#julianObject

This method is equivalent to new_start(Date::JULIAN).



5465
5466
5467
5468
5469
# File 'date_core.c', line 5465

static VALUE
d_lite_julian(VALUE self)
{
    return dup_obj_with_new_start(self, JULIAN);
}

#julian?Boolean

Retruns true if the date is before the day of calendar reform.

For example:

Date.new(1582,10,15).julian?		#=> false
(Date.new(1582,10,15) - 1).julian?	#=> true

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5286
5287
5288
5289
5290
5291
# File 'date_core.c', line 5286

static VALUE
d_lite_julian_p(VALUE self)
{
    get_d1(self);
    return f_boolcast(m_julian_p(dat));
}

#ldInteger

Returns the Lilian day number. This is a whole number, which is adjusted by the offset as the local time.

For example:

Date.new(2001,2,3).ld		#=> 152784

Returns:

  • (Integer)


4877
4878
4879
4880
4881
4882
# File 'date_core.c', line 4877

static VALUE
d_lite_ld(VALUE self)
{
    get_d1(self);
    return f_sub(m_real_local_jd(dat), INT2FIX(2299160));
}

#leap?Boolean

Returns true if the year is a leap year.

For example:

Date.new(2000).leap?	#=> true
Date.new(2001).leap?	#=> false

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
# File 'date_core.c', line 5322

static VALUE
d_lite_leap_p(VALUE self)
{
    int rjd, ns, ry, rm, rd;

    get_d1(self);
    if (m_gregorian_p(dat))
	return f_boolcast(c_gregorian_leap_p(m_year(dat)));

    c_civil_to_jd(m_year(dat), 3, 1, m_virtual_sg(dat),
		  &rjd, &ns);
    c_jd_to_civil(rjd - 1, m_virtual_sg(dat), &ry, &rm, &rd);
    return f_boolcast(rd == 29);
}

#marshal_dumpObject

:nodoc:



7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
# File 'date_core.c', line 7243

static VALUE
d_lite_marshal_dump(VALUE self)
{
    VALUE a;

    get_d1(self);

    a = rb_ary_new3(6,
		    m_nth(dat),
		    INT2FIX(m_jd(dat)),
		    INT2FIX(m_df(dat)),
		    m_sf(dat),
		    INT2FIX(m_of(dat)),
		    DBL2NUM(m_sg(dat)));

    if (FL_TEST(self, FL_EXIVAR)) {
	rb_copy_generic_ivar(a, self);
	FL_SET(a, FL_EXIVAR);
    }

    return a;
}

#marshal_loadObject

:nodoc:



7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
# File 'date_core.c', line 7267

static VALUE
d_lite_marshal_load(VALUE self, VALUE a)
{
    get_d1(self);

    if (TYPE(a) != T_ARRAY)
	rb_raise(rb_eTypeError, "expected an array");

    switch (RARRAY_LEN(a)) {
      case 3:
	{
	    VALUE ajd, of, sg, nth, sf;
	    int jd, df, rof;
	    double rsg;

	    ajd = RARRAY_PTR(a)[0];
	    of = RARRAY_PTR(a)[1];
	    sg = RARRAY_PTR(a)[2];

	    old_to_new(ajd, of, sg,
		       &nth, &jd, &df, &sf, &rof, &rsg);

	    if (!df && f_zero_p(sf) && !rof) {
		set_to_simple(&dat->s, nth, jd, rsg, 0, 0, 0, HAVE_JD);
	    } else {
		if (!complex_dat_p(dat))
		    rb_raise(rb_eArgError,
			     "cannot load complex into simple");

		set_to_complex(&dat->c, nth, jd, df, sf, rof, rsg,
			       0, 0, 0, 0, 0, 0,
			       HAVE_JD | HAVE_DF | COMPLEX_DAT);
	    }
	}
	break;
      case 6:
	{
	    VALUE nth, sf;
	    int jd, df, of;
	    double sg;

	    nth = RARRAY_PTR(a)[0];
	    jd = NUM2INT(RARRAY_PTR(a)[1]);
	    df = NUM2INT(RARRAY_PTR(a)[2]);
	    sf = RARRAY_PTR(a)[3];
	    of = NUM2INT(RARRAY_PTR(a)[4]);
	    sg = NUM2DBL(RARRAY_PTR(a)[5]);
	    if (!df && f_zero_p(sf) && !of) {
		set_to_simple(&dat->s, nth, jd, sg, 0, 0, 0, HAVE_JD);
	    } else {
		if (!complex_dat_p(dat))
		    rb_raise(rb_eArgError,
			     "cannot load complex into simple");

		set_to_complex(&dat->c, nth, jd, df, sf, of, sg,
			       0, 0, 0, 0, 0, 0,
			       HAVE_JD | HAVE_DF | COMPLEX_DAT);
	    }
	}
	break;
      default:
	rb_raise(rb_eTypeError, "invalid size");
	break;
    }

    if (FL_TEST(a, FL_EXIVAR)) {
	rb_copy_generic_ivar(self, a);
	FL_SET(self, FL_EXIVAR);
    }

    return self;
}

#mdayFixnum #dayFixnum

Returns the day of the month (1-31).

For example:

Date.new(2001,2,3).mday		#=> 3

Overloads:

  • #mdayFixnum

    Returns:

    • (Fixnum)
  • #dayFixnum

    Returns:

    • (Fixnum)


4948
4949
4950
4951
4952
4953
# File 'date_core.c', line 4948

static VALUE
d_lite_mday(VALUE self)
{
    get_d1(self);
    return INT2FIX(m_mday(dat));
}

#mjdInteger

Returns the modified Julian day number. This is a whole number, which is adjusted by the offset as the local time.

For example:

DateTime.new(2001,2,3,4,5,6,'+7').mjd	#=> 51943
DateTime.new(2001,2,3,4,5,6,'-7').mjd	#=> 51943

Returns:

  • (Integer)


4859
4860
4861
4862
4863
4864
# File 'date_core.c', line 4859

static VALUE
d_lite_mjd(VALUE self)
{
    get_d1(self);
    return f_sub(m_real_local_jd(dat), INT2FIX(2400001));
}

#monFixnum #monthFixnum

Returns the month (1-12).

For example:

Date.new(2001,2,3).mon		#=> 2

Overloads:

  • #monFixnum

    Returns:

    • (Fixnum)
  • #monthFixnum

    Returns:

    • (Fixnum)


4930
4931
4932
4933
4934
4935
# File 'date_core.c', line 4930

static VALUE
d_lite_mon(VALUE self)
{
    get_d1(self);
    return INT2FIX(m_mon(dat));
}

#monday?Boolean

Returns true if the date is Monday.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5078
5079
5080
5081
5082
5083
# File 'date_core.c', line 5078

static VALUE
d_lite_monday_p(VALUE self)
{
    get_d1(self);
    return f_boolcast(m_wday(dat) == 1);
}

#monFixnum #monthFixnum

Returns the month (1-12).

For example:

Date.new(2001,2,3).mon		#=> 2

Overloads:

  • #monFixnum

    Returns:

    • (Fixnum)
  • #monthFixnum

    Returns:

    • (Fixnum)


4930
4931
4932
4933
4934
4935
# File 'date_core.c', line 4930

static VALUE
d_lite_mon(VALUE self)
{
    get_d1(self);
    return INT2FIX(m_mon(dat));
}

#new_start([start = Date::ITALY]) ⇒ Object

Duplicates self and resets its the day of calendar reform.

For example:

d = Date.new(1582,10,15)
d.new_start(Date::JULIAN)		#=> #<Date: 1582-10-05 ...>


5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
# File 'date_core.c', line 5420

static VALUE
d_lite_new_start(int argc, VALUE *argv, VALUE self)
{
    VALUE vsg;
    double sg;

    rb_scan_args(argc, argv, "01", &vsg);

    sg = DEFAULT_SG;
    if (argc >= 1)
	val2sg(vsg, sg);

    return dup_obj_with_new_start(self, sg);
}

#nextObject

Returns a date object denoting the following day.



6034
6035
6036
6037
6038
# File 'date_core.c', line 6034

static VALUE
d_lite_next(VALUE self)
{
    return d_lite_next_day(0, (VALUE *)NULL, self);
}

#next_day([n = 1]) ⇒ Object

This method is equivalent to d + n.



6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
# File 'date_core.c', line 6000

static VALUE
d_lite_next_day(int argc, VALUE *argv, VALUE self)
{
    VALUE n;

    rb_scan_args(argc, argv, "01", &n);
    if (argc < 1)
	n = INT2FIX(1);
    return d_lite_plus(self, n);
}

#next_month([n = 1]) ⇒ Object

This method is equivalent to d >> n



6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
# File 'date_core.c', line 6117

static VALUE
d_lite_next_month(int argc, VALUE *argv, VALUE self)
{
    VALUE n;

    rb_scan_args(argc, argv, "01", &n);
    if (argc < 1)
	n = INT2FIX(1);
    return d_lite_rshift(self, n);
}

#next_year([n = 1]) ⇒ Object

This method is equivalent to d >> (n * 12)



6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
# File 'date_core.c', line 6151

static VALUE
d_lite_next_year(int argc, VALUE *argv, VALUE self)
{
    VALUE n;

    rb_scan_args(argc, argv, "01", &n);
    if (argc < 1)
	n = INT2FIX(1);
    return d_lite_rshift(self, f_mul(n, INT2FIX(12)));
}

#prev_day([n = 1]) ⇒ Object

This method is equivalent to d - n.



6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
# File 'date_core.c', line 6017

static VALUE
d_lite_prev_day(int argc, VALUE *argv, VALUE self)
{
    VALUE n;

    rb_scan_args(argc, argv, "01", &n);
    if (argc < 1)
	n = INT2FIX(1);
    return d_lite_minus(self, n);
}

#prev_month([n = 1]) ⇒ Object

This method is equivalent to d << n



6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
# File 'date_core.c', line 6134

static VALUE
d_lite_prev_month(int argc, VALUE *argv, VALUE self)
{
    VALUE n;

    rb_scan_args(argc, argv, "01", &n);
    if (argc < 1)
	n = INT2FIX(1);
    return d_lite_lshift(self, n);
}

#prev_year([n = 1]) ⇒ Object

This method is equivalent to d << (n * 12)



6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
# File 'date_core.c', line 6168

static VALUE
d_lite_prev_year(int argc, VALUE *argv, VALUE self)
{
    VALUE n;

    rb_scan_args(argc, argv, "01", &n);
    if (argc < 1)
	n = INT2FIX(1);
    return d_lite_lshift(self, f_mul(n, INT2FIX(12)));
}

#rfc2822String #rfc822String

This method is equivalent to strftime('%a, %-d %b %Y %T %z').

Overloads:

  • #rfc2822String

    Returns:

    • (String)
  • #rfc822String

    Returns:

    • (String)


7153
7154
7155
7156
7157
# File 'date_core.c', line 7153

static VALUE
d_lite_rfc2822(VALUE self)
{
    return strftimev("%a, %-d %b %Y %T %z", self, set_tmx);
}

#rfc3339String

This method is equivalent to strftime('%FT%T%:z').

Returns:

  • (String)


7140
7141
7142
7143
7144
# File 'date_core.c', line 7140

static VALUE
d_lite_rfc3339(VALUE self)
{
    return strftimev("%Y-%m-%dT%H:%M:%S%:z", self, set_tmx);
}

#rfc2822String #rfc822String

This method is equivalent to strftime('%a, %-d %b %Y %T %z').

Overloads:

  • #rfc2822String

    Returns:

    • (String)
  • #rfc822String

    Returns:

    • (String)


7153
7154
7155
7156
7157
# File 'date_core.c', line 7153

static VALUE
d_lite_rfc2822(VALUE self)
{
    return strftimev("%a, %-d %b %Y %T %z", self, set_tmx);
}

#saturday?Boolean

Returns true if the date is Saturday.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5143
5144
5145
5146
5147
5148
# File 'date_core.c', line 5143

static VALUE
d_lite_saturday_p(VALUE self)
{
    get_d1(self);
    return f_boolcast(m_wday(dat) == 6);
}

#startFloat

Returns the Julian day number denoting the day of calendar reform.

For example:

Date.new(2001,2,3).start			#=> 2299161.0
Date.new(2001,2,3,Date::GREGORIAN).start	#=> -Infinity

Returns:

  • (Float)


5348
5349
5350
5351
5352
5353
# File 'date_core.c', line 5348

static VALUE
d_lite_start(VALUE self)
{
    get_d1(self);
    return DBL2NUM(m_sg(dat));
}

#step(limit[, step = 1]) ⇒ Object #step(limit[, step = 1]) {|date| ... } ⇒ self

Iterates evaluation of the given block, which takes a date object. The limit should be a date object.

For example:

Date.new(2001).step(Date.new(2001,-1,-1)).select{|d| d.sunday?}.size

#=> 52

Overloads:

  • #step(limit[, step = 1]) {|date| ... } ⇒ self

    Yields:

    • (date)

    Returns:

    • (self)


6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
# File 'date_core.c', line 6194

static VALUE
d_lite_step(int argc, VALUE *argv, VALUE self)
{
    VALUE limit, step, date;

    rb_scan_args(argc, argv, "11", &limit, &step);

    if (argc < 2)
	step = INT2FIX(1);

#if 0
    if (f_zero_p(step))
	rb_raise(rb_eArgError, "step can't be 0");
#endif

    RETURN_ENUMERATOR(self, argc, argv);

    date = self;
    switch (FIX2INT(f_cmp(step, INT2FIX(0)))) {
      case -1:
	while (FIX2INT(d_lite_cmp(date, limit)) >= 0) {
	    rb_yield(date);
	    date = d_lite_plus(date, step);
	}
	break;
      case 0:
	while (1)
	    rb_yield(date);
	break;
      case 1:
	while (FIX2INT(d_lite_cmp(date, limit)) <= 0) {
	    rb_yield(date);
	    date = d_lite_plus(date, step);
	}
	break;
      default:
	abort();
    }
    return self;
}

#strftime([format = '%F']) ⇒ String

Formats date according to the directives in the given format

string.
The directives begins with a percent (%) character.
Any text not listed as a directive will be passed through to the
output string.

The directive consists of a percent (%) character,
zero or more flags, optional minimum field width,
optional modifier and a conversion specifier
as follows.

  %<flags><width><modifier><conversion>

Flags:
  -  don't pad a numerical output.
  _  use spaces for padding.
  0  use zeros for padding.
  ^  upcase the result string.
  #  change case.
  :  use colons for %z.

The minimum field width specifies the minimum width.

The modifier is "E" and "O".
They are ignored.

Format directives:

  Date (Year, Month, Day):
    %Y - Year with century (can be negative, 4 digits at least)
            -0001, 0000, 1995, 2009, 14292, etc.
    %C - year / 100 (round down.  20 in 2009)
    %y - year % 100 (00..99)

    %m - Month of the year, zero-padded (01..12)
            %_m  blank-padded ( 1..12)
            %-m  no-padded (1..12)
    %B - The full month name (``January'')
            %^B  uppercased (``JANUARY'')
    %b - The abbreviated month name (``Jan'')
            %^b  uppercased (``JAN'')
    %h - Equivalent to %b

    %d - Day of the month, zero-padded (01..31)
            %-d  no-padded (1..31)
    %e - Day of the month, blank-padded ( 1..31)

    %j - Day of the year (001..366)

  Time (Hour, Minute, Second, Subsecond):
    %H - Hour of the day, 24-hour clock, zero-padded (00..23)
    %k - Hour of the day, 24-hour clock, blank-padded ( 0..23)
    %I - Hour of the day, 12-hour clock, zero-padded (01..12)
    %l - Hour of the day, 12-hour clock, blank-padded ( 1..12)
    %P - Meridian indicator, lowercase (``am'' or ``pm'')
    %p - Meridian indicator, uppercase (``AM'' or ``PM'')

    %M - Minute of the hour (00..59)

    %S - Second of the minute (00..59)

    %L - Millisecond of the second (000..999)
    %N - Fractional seconds digits, default is 9 digits (nanosecond)
            %3N  millisecond (3 digits)
            %6N  microsecond (6 digits)
            %9N  nanosecond (9 digits)
            %12N picosecond (12 digits)

  Time zone:
    %z - Time zone as hour and minute offset from UTC (e.g. +0900)
            %:z - hour and minute offset from UTC with a colon (e.g. +09:00)
            %::z - hour, minute and second offset from UTC (e.g. +09:00:00)
            %:::z - hour, minute and second offset from UTC
                                              (e.g. +09, +09:30, +09:30:30)
    %Z - Time zone abbreviation name

  Weekday:
    %A - The full weekday name (``Sunday'')
            %^A  uppercased (``SUNDAY'')
    %a - The abbreviated name (``Sun'')
            %^a  uppercased (``SUN'')
    %u - Day of the week (Monday is 1, 1..7)
    %w - Day of the week (Sunday is 0, 0..6)

  ISO 8601 week-based year and week number:
  The week 1 of YYYY starts with a Monday and includes YYYY-01-04.
  The days in the year before the first week are in the last week of
  the previous year.
    %G - The week-based year
    %g - The last 2 digits of the week-based year (00..99)
    %V - Week number of the week-based year (01..53)

  Week number:
  The week 1 of YYYY starts with a Sunday or Monday (according to %U
  or %W).  The days in the year before the first week are in week 0.
    %U - Week number of the year.  The week starts with Sunday.  (00..53)
    %W - Week number of the year.  The week starts with Monday.  (00..53)

  Seconds since the Unix Epoch:
    %s - Number of seconds since 1970-01-01 00:00:00 UTC.
    %Q - Number of microseconds since 1970-01-01 00:00:00 UTC.

  Literal string:
    %n - Newline character (\n)
    %t - Tab character (\t)
    %% - Literal ``%'' character

  Combination:
    %c - date and time (%a %b %e %T %Y)
    %D - Date (%m/%d/%y)
    %F - The ISO 8601 date format (%Y-%m-%d)
    %v - VMS date (%e-%b-%Y)
    %x - Same as %D
    %X - Same as %T
    %r - 12-hour time (%I:%M:%S %p)
    %R - 24-hour time (%H:%M)
    %T - 24-hour time (%H:%M:%S)
    %+ - date(1) (%a %b %e %H:%M:%S %Z %Y)

This method is similar to strftime() function defined in ISO C and POSIX.
Several directives (%a, %A, %b, %B, %c, %p, %r, %x, %X, %E*, %O* and %Z)
are locale dependent in the function.
However this method is locale independent.
So, the result may differ even if a same format string is used in other
systems such as C.
It is good practice to avoid %x and %X because there are corresponding
locale independent representations, %D and %T.

Examples:

  d = DateTime.new(2007,11,19,8,37,48,"-06:00")

#=> #<DateTime: 2007-11-19T08:37:48-0600 ...>

  d.strftime("Printed on %m/%d/%Y")   #=> "Printed on 11/19/2007"
  d.strftime("at %I:%M%p")            #=> "at 08:37AM"

Various ISO 8601 formats:
  %Y%m%d           => 20071119                  Calendar date (basic)
  %F               => 2007-11-19                Calendar date (extended)
  %Y-%m            => 2007-11                   Calendar date, reduced accuracy, specific month
  %Y               => 2007                      Calendar date, reduced accuracy, specific year
  %C               => 20                        Calendar date, reduced accuracy, specific century
  %Y%j             => 2007323                   Ordinal date (basic)
  %Y-%j            => 2007-323                  Ordinal date (extended)
  %GW%V%u          => 2007W471                  Week date (basic)
  %G-W%V-%u        => 2007-W47-1                Week date (extended)
  %GW%V            => 2007W47                   Week date, reduced accuracy, specific week (basic)
  %G-W%V           => 2007-W47                  Week date, reduced accuracy, specific week (extended)
  %H%M%S           => 083748                    Local time (basic)
  %T               => 08:37:48                  Local time (extended)
  %H%M             => 0837                      Local time, reduced accuracy, specific minute (basic)
  %H:%M            => 08:37                     Local time, reduced accuracy, specific minute (extended)
  %H               => 08                        Local time, reduced accuracy, specific hour
  %H%M%S,%L        => 083748,000                Local time with decimal fraction, comma as decimal sign (basic)
  %T,%L            => 08:37:48,000              Local time with decimal fraction, comma as decimal sign (extended)
  %H%M%S.%L        => 083748.000                Local time with decimal fraction, full stop as decimal sign (basic)
  %T.%L            => 08:37:48.000              Local time with decimal fraction, full stop as decimal sign (extended)
  %H%M%S%z         => 083748-0600               Local time and the difference from UTC (basic)
  %T%:z            => 08:37:48-06:00            Local time and the difference from UTC (extended)
  %Y%m%dT%H%M%S%z  => 20071119T083748-0600      Date and time of day for calendar date (basic)
  %FT%T%:z         => 2007-11-19T08:37:48-06:00 Date and time of day for calendar date (extended)
  %Y%jT%H%M%S%z    => 2007323T083748-0600       Date and time of day for ordinal date (basic)
  %Y-%jT%T%:z      => 2007-323T08:37:48-06:00   Date and time of day for ordinal date (extended)
  %GW%V%uT%H%M%S%z => 2007W471T083748-0600      Date and time of day for week date (basic)
  %G-W%V-%uT%T%:z  => 2007-W47-1T08:37:48-06:00 Date and time of day for week date (extended)
  %Y%m%dT%H%M      => 20071119T0837             Calendar date and local time (basic)
  %FT%R            => 2007-11-19T08:37          Calendar date and local time (extended)
  %Y%jT%H%MZ       => 2007323T0837Z             Ordinal date and UTC of day (basic)
  %Y-%jT%RZ        => 2007-323T08:37Z           Ordinal date and UTC of day (extended)
  %GW%V%uT%H%M%z   => 2007W471T0837-0600        Week date and local time and difference from UTC (basic)
  %G-W%V-%uT%R%:z  => 2007-W47-1T08:37-06:00    Week date and local time and difference from UTC (extended)

See also strftime(3) and strptime.

Returns:

  • (String)


7082
7083
7084
7085
7086
7087
# File 'date_core.c', line 7082

static VALUE
d_lite_strftime(int argc, VALUE *argv, VALUE self)
{
    return date_strftime_internal(argc, argv, self,
				  "%Y-%m-%d", set_tmx);
}

#nextObject

Returns a date object denoting the following day.



6034
6035
6036
6037
6038
# File 'date_core.c', line 6034

static VALUE
d_lite_next(VALUE self)
{
    return d_lite_next_day(0, (VALUE *)NULL, self);
}

#sunday?Boolean

Returns true if the date is Sunday.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5065
5066
5067
5068
5069
5070
# File 'date_core.c', line 5065

static VALUE
d_lite_sunday_p(VALUE self)
{
    get_d1(self);
    return f_boolcast(m_wday(dat) == 0);
}

#thursday?Boolean

Returns true if the date is Thursday.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5117
5118
5119
5120
5121
5122
# File 'date_core.c', line 5117

static VALUE
d_lite_thursday_p(VALUE self)
{
    get_d1(self);
    return f_boolcast(m_wday(dat) == 4);
}

#to_dateself

Returns self;

Returns:

  • (self)


8737
8738
8739
8740
8741
# File 'date_core.c', line 8737

static VALUE
date_to_date(VALUE self)
{
    return self;
}

#to_datetimeObject

Returns a DateTime object which denotes self.



8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
# File 'date_core.c', line 8749

static VALUE
date_to_datetime(VALUE self)
{
    get_d1a(self);

    if (simple_dat_p(adat)) {
	VALUE new = d_lite_s_alloc_simple(cDateTime);
	{
	    get_d1b(new);
	    bdat->s = adat->s;
	    return new;
	}
    }
    else {
	VALUE new = d_lite_s_alloc_complex(cDateTime);
	{
	    get_d1b(new);
	    bdat->c = adat->c;
	    bdat->c.df = 0;
	    bdat->c.sf = INT2FIX(0);
#ifndef USE_PACK
	    bdat->c.hour = 0;
	    bdat->c.min = 0;
	    bdat->c.sec = 0;
#else
	    bdat->c.pc = PACK5(EX_MON(adat->c.pc), EX_MDAY(adat->c.pc),
			       0, 0, 0);
	    bdat->c.flags |= HAVE_DF | HAVE_TIME;
#endif
	    return new;
	}
    }
}

#to_sString

Returns a string in an ISO 8601 format (This method doesn't use the expanded representations).

For example:

Date.new(2001,2,3).to_s	#=> "2001-02-03"

Returns:

  • (String)


6614
6615
6616
6617
6618
# File 'date_core.c', line 6614

static VALUE
d_lite_to_s(VALUE self)
{
    return strftimev("%Y-%m-%d", self, set_tmx);
}

#to_timeTime

Returns a Time object which denotes self.

Returns:

  • (Time)


8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
# File 'date_core.c', line 8720

static VALUE
date_to_time(VALUE self)
{
    get_d1(self);

    return f_local3(rb_cTime,
		    m_real_year(dat),
		    INT2FIX(m_mon(dat)),
		    INT2FIX(m_mday(dat)));
}

#tuesday?Boolean

Returns true if the date is Tuesday.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5091
5092
5093
5094
5095
5096
# File 'date_core.c', line 5091

static VALUE
d_lite_tuesday_p(VALUE self)
{
    get_d1(self);
    return f_boolcast(m_wday(dat) == 2);
}

#upto(max) ⇒ Object #upto(max) {|date| ... } ⇒ self

This method is equivalent to step(max, 1){|date| ...}.

Overloads:

  • #upto(max) {|date| ... } ⇒ self

    Yields:

    • (date)

    Returns:

    • (self)


6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
# File 'date_core.c', line 6242

static VALUE
d_lite_upto(VALUE self, VALUE max)
{
    VALUE date;

    RETURN_ENUMERATOR(self, 1, &max);

    date = self;
    while (FIX2INT(d_lite_cmp(date, max)) <= 0) {
	rb_yield(date);
	date = d_lite_plus(date, INT2FIX(1));
    }
    return self;
}

#wdayFixnum

Returns the day of week (0-6, Sunday is zero).

For example:

Date.new(2001,2,3).wday		#=> 6

Returns:

  • (Fixnum)


5052
5053
5054
5055
5056
5057
# File 'date_core.c', line 5052

static VALUE
d_lite_wday(VALUE self)
{
    get_d1(self);
    return INT2FIX(m_wday(dat));
}

#wednesday?Boolean

Returns true if the date is Wednesday.

Returns:

  • (Boolean)

Returns:

  • (Boolean)


5104
5105
5106
5107
5108
5109
# File 'date_core.c', line 5104

static VALUE
d_lite_wednesday_p(VALUE self)
{
    get_d1(self);
    return f_boolcast(m_wday(dat) == 3);
}

#iso8601String #xmlschemaString

This method is equivalent to strftime('%F').

Overloads:

  • #iso8601String

    Returns:

    • (String)
  • #xmlschemaString

    Returns:

    • (String)


7128
7129
7130
7131
7132
# File 'date_core.c', line 7128

static VALUE
d_lite_iso8601(VALUE self)
{
    return strftimev("%Y-%m-%d", self, set_tmx);
}

#ydayFixnum

Returns the day of the year (1-366).

For example:

Date.new(2001,2,3).yday		#=> 34

Returns:

  • (Fixnum)


4912
4913
4914
4915
4916
4917
# File 'date_core.c', line 4912

static VALUE
d_lite_yday(VALUE self)
{
    get_d1(self);
    return INT2FIX(m_yday(dat));
}

#yearInteger

Returns the year.

For example:

Date.new(2001,2,3).year		#=> 2001
(Date.new(1,1,1) - 1).year	#=> 0

Returns:

  • (Integer)


4895
4896
4897
4898
4899
4900
# File 'date_core.c', line 4895

static VALUE
d_lite_year(VALUE self)
{
    get_d1(self);
    return m_real_year(dat);
}