Class: Module

Inherits:
Object show all
Defined in:
object.c,
class.c,
object.c

Overview

*********************************************************************

A <code>Module</code> is a collection of methods and constants. The
methods in a module may be instance methods or module methods.
Instance methods appear as methods in a class when the module is
included, module methods do not. Conversely, module methods may be
called without creating an encapsulating object, while instance
methods may not. (See <code>Module#module_function</code>.)

In the descriptions that follow, the parameter <i>sym</i> refers
to a symbol, which is either a quoted string or a
<code>Symbol</code> (such as <code>:name</code>).

   module Mod
     include Math
     CONST = 1
     def meth
       #  ...
     end
   end
   Mod.class              #=> Module
   Mod.constants          #=> [:CONST, :PI, :E]
   Mod.instance_methods   #=> [:meth]

Direct Known Subclasses

Class

Class Method Summary collapse

Instance Method Summary collapse

Constructor Details

#newObject #new {|mod| ... } ⇒ Object

Creates a new anonymous module. If a block is given, it is passed the module object, and the block is evaluated in the context of this module using module_eval.

fred = Module.new do
  def meth1
    "hello"
  end
  def meth2
    "bye"
  end
end
a = "my string"
a.extend(fred)   #=> "my string"
a.meth1          #=> "hello"
a.meth2          #=> "bye"

Assign the module to a constant (name starting uppercase) if you want to treat it like a regular module.

Overloads:

  • #new {|mod| ... } ⇒ Object

    Yields:

    • (mod)


1709
1710
1711
1712
1713
1714
1715
1716
# File 'object.c', line 1709

static VALUE
rb_mod_initialize(VALUE module)
{
    if (rb_block_given_p()) {
	rb_mod_module_exec(1, &module, module);
    }
    return Qnil;
}

Class Method Details

.constantsArray .constants(inherited) ⇒ Array

In the first form, returns an array of the names of all constants accessible from the point of call. This list includes the names of all modules and classes defined in the global scope.

Module.constants.first(4)
   # => [:ARGF, :ARGV, :ArgumentError, :Array]

Module.constants.include?(:SEEK_SET)   # => false

class IO
  Module.constants.include?(:SEEK_SET) # => true
end

The second form calls the instance method constants.

Overloads:



375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
# File 'eval.c', line 375

static VALUE
rb_mod_s_constants(int argc, VALUE *argv, VALUE mod)
{
    const NODE *cref = rb_vm_cref();
    VALUE klass;
    VALUE cbase = 0;
    void *data = 0;

    if (argc > 0 || mod != rb_cModule) {
	return rb_mod_constants(argc, argv, mod);
    }

    while (cref) {
	klass = cref->nd_clss;
	if (!(cref->flags & NODE_FL_CREF_PUSHED_BY_EVAL) &&
	    !NIL_P(klass)) {
	    data = rb_mod_const_at(cref->nd_clss, data);
	    if (!cbase) {
		cbase = klass;
	    }
	}
	cref = cref->nd_next;
    }

    if (cbase) {
	data = rb_mod_const_of(cbase, data);
    }
    return rb_const_list(data);
}

.nestingArray

Returns the list of Modules nested at the point of call.

module M1
  module M2
    $a = Module.nesting
  end
end
$a           #=> [M1::M2, M1]
$a[0].name   #=> "M1::M2"

Returns:



336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# File 'eval.c', line 336

static VALUE
rb_mod_nesting(void)
{
    VALUE ary = rb_ary_new();
    const NODE *cref = rb_vm_cref();

    while (cref && cref->nd_next) {
	VALUE klass = cref->nd_clss;
	if (!(cref->flags & NODE_FL_CREF_PUSHED_BY_EVAL) &&
	    !NIL_P(klass)) {
	    rb_ary_push(ary, klass);
	}
	cref = cref->nd_next;
    }
    return ary;
}

Instance Method Details

#<(other) ⇒ true, ...

Returns true if mod is a subclass of other. Returns nil if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A<B” implies “A<B”.)

Returns:

  • (true, false, nil)


1590
1591
1592
1593
1594
1595
# File 'object.c', line 1590

static VALUE
rb_mod_lt(VALUE mod, VALUE arg)
{
    if (mod == arg) return Qfalse;
    return rb_class_inherited_p(mod, arg);
}

#<=(other) ⇒ true, ...

Returns true if mod is a subclass of other or is the same as other. Returns nil if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A<B” implies “A<B”.)

Returns:

  • (true, false, nil)


1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
# File 'object.c', line 1559

VALUE
rb_class_inherited_p(VALUE mod, VALUE arg)
{
    VALUE start = mod;

    if (mod == arg) return Qtrue;
    if (!CLASS_OR_MODULE_P(arg) && !RB_TYPE_P(arg, T_ICLASS)) {
	rb_raise(rb_eTypeError, "compared with non class/module");
    }
    arg = RCLASS_ORIGIN(arg);
    if (class_search_ancestor(mod, arg)) {
	return Qtrue;
    }
    /* not mod < arg; check if mod > arg */
    if (class_search_ancestor(arg, start)) {
	return Qfalse;
    }
    return Qnil;
}

#<=>(other_module) ⇒ -1, ...

Comparison—Returns -1, 0, +1 or nil depending on whether module includes other_module, they are the same, or if module is included by other_module. This is the basis for the tests in Comparable.

Returns nil if module has no relationship with other_module, if other_module is not a module, or if the two values are incomparable.

Returns:

  • (-1, 0, +1, nil)


1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
# File 'object.c', line 1650

static VALUE
rb_mod_cmp(VALUE mod, VALUE arg)
{
    VALUE cmp;

    if (mod == arg) return INT2FIX(0);
    if (!CLASS_OR_MODULE_P(arg)) {
	return Qnil;
    }

    cmp = rb_class_inherited_p(mod, arg);
    if (NIL_P(cmp)) return Qnil;
    if (cmp) {
	return INT2FIX(-1);
    }
    return INT2FIX(1);
}

#==(other) ⇒ Boolean #equal?(other) ⇒ Boolean #eql?(other) ⇒ Boolean

Equality — At the Object level, == returns true only if obj and other are the same object. Typically, this method is overridden in descendant classes to provide class-specific meaning.

Unlike ==, the equal? method should never be overridden by subclasses as it is used to determine object identity (that is, a.equal?(b) if and only if a is the same object as b):

obj = "a"
other = obj.dup

obj == other      #=> true
obj.equal? other  #=> false
obj.equal? obj    #=> true

The eql? method returns true if obj and other refer to the same hash key. This is used by Hash to test members for equality. For objects of class Object, eql? is synonymous with ==. Subclasses normally continue this tradition by aliasing eql? to their overridden == method, but there are exceptions. Numeric types, for example, perform type conversion across ==, but not across eql?, so:

1 == 1.0     #=> true
1.eql? 1.0   #=> false

Overloads:

  • #==(other) ⇒ Boolean

    Returns:

    • (Boolean)
  • #equal?(other) ⇒ Boolean

    Returns:

    • (Boolean)
  • #eql?(other) ⇒ Boolean

    Returns:

    • (Boolean)


141
142
143
144
145
146
# File 'object.c', line 141

VALUE
rb_obj_equal(VALUE obj1, VALUE obj2)
{
    if (obj1 == obj2) return Qtrue;
    return Qfalse;
}

#===(obj) ⇒ Boolean

Case Equality—Returns true if obj is an instance of mod or one of mod’s descendants. Of limited use for modules, but can be used in case statements to classify objects by class.

Returns:

  • (Boolean)


1541
1542
1543
1544
1545
# File 'object.c', line 1541

static VALUE
rb_mod_eqq(VALUE mod, VALUE arg)
{
    return rb_obj_is_kind_of(arg, mod);
}

#>(other) ⇒ true, ...

Returns true if mod is an ancestor of other. Returns nil if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A<B” implies “B>A”.)

Returns:

  • (true, false, nil)


1631
1632
1633
1634
1635
1636
# File 'object.c', line 1631

static VALUE
rb_mod_gt(VALUE mod, VALUE arg)
{
    if (mod == arg) return Qfalse;
    return rb_mod_ge(mod, arg);
}

#>=(other) ⇒ true, ...

Returns true if mod is an ancestor of other, or the two modules are the same. Returns nil if there’s no relationship between the two. (Think of the relationship in terms of the class definition: “class A<B” implies “B>A”.)

Returns:

  • (true, false, nil)


1610
1611
1612
1613
1614
1615
1616
1617
1618
# File 'object.c', line 1610

static VALUE
rb_mod_ge(VALUE mod, VALUE arg)
{
    if (!CLASS_OR_MODULE_P(arg)) {
	rb_raise(rb_eTypeError, "compared with non class/module");
    }

    return rb_class_inherited_p(arg, mod);
}

#alias_method(new_name, old_name) ⇒ self (private)

Makes new_name a new copy of the method old_name. This can be used to retain access to methods that are overridden.

module Mod
  alias_method :orig_exit, :exit
  def exit(code=0)
    puts "Exiting with code #{code}"
    orig_exit(code)
  end
end
include Mod
exit(99)

produces:

Exiting with code 99

Returns:

  • (self)


1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
# File 'vm_method.c', line 1317

static VALUE
rb_mod_alias_method(VALUE mod, VALUE newname, VALUE oldname)
{
    ID oldid = rb_check_id(&oldname);
    if (!oldid) {
	rb_print_undef_str(mod, oldname);
    }
    rb_alias(mod, rb_to_id(newname), oldid);
    return mod;
}

#ancestorsArray

Returns a list of modules included in mod (including mod itself).

module Mod
  include Math
  include Comparable
end

Mod.ancestors    #=> [Mod, Comparable, Math]
Math.ancestors   #=> [Math]

Returns:



1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
# File 'class.c', line 1036

VALUE
rb_mod_ancestors(VALUE mod)
{
    VALUE p, ary = rb_ary_new();

    for (p = mod; p; p = RCLASS_SUPER(p)) {
	if (BUILTIN_TYPE(p) == T_ICLASS) {
	    rb_ary_push(ary, RBASIC(p)->klass);
	}
	else if (p == RCLASS_ORIGIN(p)) {
	    rb_ary_push(ary, p);
	}
    }
    return ary;
}

#append_features(mod) ⇒ Object (private)

When this module is included in another, Ruby calls append_features in this module, passing it the receiving module in mod. Ruby’s default implementation is to add the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also Module#include.



1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
# File 'eval.c', line 1006

static VALUE
rb_mod_append_features(VALUE module, VALUE include)
{
    if (!CLASS_OR_MODULE_P(include)) {
	Check_Type(include, T_CLASS);
    }
    rb_include_module(include, module);

    return module;
}

#attrObject (private)



1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
# File 'object.c', line 1984

VALUE
rb_mod_attr(int argc, VALUE *argv, VALUE klass)
{
    if (argc == 2 && (argv[1] == Qtrue || argv[1] == Qfalse)) {
	rb_warning("optional boolean argument is obsoleted");
	rb_attr(klass, id_for_attr(argv[0]), 1, RTEST(argv[1]), TRUE);
	return Qnil;
    }
    return rb_mod_attr_reader(argc, argv, klass);
}

#attr_accessor(symbol, ...) ⇒ nil (private) #attr_accessor(string, ...) ⇒ nil (private)

Defines a named attribute for this module, where the name is symbol.id2name, creating an instance variable (@name) and a corresponding access method to read it. Also creates a method called name= to set the attribute. String arguments are converted to symbols.

module Mod
  attr_accessor(:one, :two)
end
Mod.instance_methods.sort   #=> [:one, :one=, :two, :two=]

Overloads:

  • #attr_accessor(symbol, ...) ⇒ nil

    Returns:

    • (nil)
  • #attr_accessor(string, ...) ⇒ nil

    Returns:

    • (nil)


2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
# File 'object.c', line 2033

static VALUE
rb_mod_attr_accessor(int argc, VALUE *argv, VALUE klass)
{
    int i;

    for (i=0; i<argc; i++) {
	rb_attr(klass, id_for_attr(argv[i]), TRUE, TRUE, TRUE);
    }
    return Qnil;
}

#attr_reader(symbol, ...) ⇒ nil (private) #attr(symbol, ...) ⇒ nil (private) #attr_reader(string, ...) ⇒ nil (private) #attr(string, ...) ⇒ nil (private)

Creates instance variables and corresponding methods that return the value of each instance variable. Equivalent to calling “attr:name” on each name in turn. String arguments are converted to symbols.

Overloads:

  • #attr_reader(symbol, ...) ⇒ nil

    Returns:

    • (nil)
  • #attr(symbol, ...) ⇒ nil

    Returns:

    • (nil)
  • #attr_reader(string, ...) ⇒ nil

    Returns:

    • (nil)
  • #attr(string, ...) ⇒ nil

    Returns:

    • (nil)


1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
# File 'object.c', line 1973

static VALUE
rb_mod_attr_reader(int argc, VALUE *argv, VALUE klass)
{
    int i;

    for (i=0; i<argc; i++) {
	rb_attr(klass, id_for_attr(argv[i]), TRUE, FALSE, TRUE);
    }
    return Qnil;
}

#attr_writer(symbol, ...) ⇒ nil (private) #attr_writer(string, ...) ⇒ nil (private)

Creates an accessor method to allow assignment to the attribute symbol.id2name. String arguments are converted to symbols.

Overloads:

  • #attr_writer(symbol, ...) ⇒ nil

    Returns:

    • (nil)
  • #attr_writer(string, ...) ⇒ nil

    Returns:

    • (nil)


2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
# File 'object.c', line 2005

static VALUE
rb_mod_attr_writer(int argc, VALUE *argv, VALUE klass)
{
    int i;

    for (i=0; i<argc; i++) {
	rb_attr(klass, id_for_attr(argv[i]), FALSE, TRUE, TRUE);
    }
    return Qnil;
}

#autoloadnil

Registers filename to be loaded (using Kernel::require) the first time that module (which may be a String or a symbol) is accessed in the namespace of mod.

module A
end
A.autoload(:B, "b")
A::B.doit            # autoloads "b"

Returns:

  • (nil)


1083
1084
1085
1086
1087
1088
1089
1090
1091
# File 'load.c', line 1083

static VALUE
rb_mod_autoload(VALUE mod, VALUE sym, VALUE file)
{
    ID id = rb_to_id(sym);

    FilePathValue(file);
    rb_autoload(mod, id, RSTRING_PTR(file));
    return Qnil;
}

#autoload?(name) ⇒ String?

Returns filename to be loaded if name is registered as autoload in the namespace of mod.

module A
end
A.autoload(:B, "b")
A.autoload?(:B)            #=> "b"

Returns:

Returns:

  • (Boolean)


1106
1107
1108
1109
1110
1111
1112
1113
1114
# File 'load.c', line 1106

static VALUE
rb_mod_autoload_p(VALUE mod, VALUE sym)
{
    ID id = rb_check_id(&sym);
    if (!id) {
	return Qnil;
    }
    return rb_autoload_p(mod, id);
}

#class_eval(string[, filename [, lineno]]) ⇒ Object #module_eval { ... } ⇒ Object

Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected. This can be used to add methods to a class. module_eval returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.

class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)

produces:

Hello there!
dummy:123:in `module_eval': undefined local variable
    or method `code' for Thing:Class

Overloads:

  • #class_eval(string[, filename [, lineno]]) ⇒ Object

    Returns:

  • #module_eval { ... } ⇒ Object

    Yields:

    Returns:



1678
1679
1680
1681
1682
# File 'vm_eval.c', line 1678

VALUE
rb_mod_module_eval(int argc, VALUE *argv, VALUE mod)
{
    return specific_eval(argc, argv, mod, mod);
}

#module_exec(arg...) {|var...| ... } ⇒ Object #class_exec(arg...) {|var...| ... } ⇒ Object

Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver. Any arguments passed to the method will be passed to the block. This can be used if the block needs to access instance variables.

class Thing
end
Thing.class_exec{
  def hello() "Hello there!" end
}
puts Thing.new.hello()

produces:

Hello there!

Overloads:

  • #module_exec(arg...) {|var...| ... } ⇒ Object

    Yields:

    • (var...)

    Returns:

  • #class_exec(arg...) {|var...| ... } ⇒ Object

    Yields:

    • (var...)

    Returns:



1706
1707
1708
1709
1710
# File 'vm_eval.c', line 1706

VALUE
rb_mod_module_exec(int argc, VALUE *argv, VALUE mod)
{
    return yield_under(mod, mod, rb_ary_new4(argc, argv));
}

#class_variable_defined?(symbol) ⇒ Boolean #class_variable_defined?(string) ⇒ Boolean

Returns true if the given class variable is defined in obj. String arguments are converted to symbols.

class Fred
  @@foo = 99
end
Fred.class_variable_defined?(:@@foo)    #=> true
Fred.class_variable_defined?(:@@bar)    #=> false

Overloads:

  • #class_variable_defined?(symbol) ⇒ Boolean

    Returns:

    • (Boolean)
  • #class_variable_defined?(string) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
# File 'object.c', line 2539

static VALUE
rb_mod_cvar_defined(VALUE obj, VALUE iv)
{
    ID id = rb_check_id(&iv);

    if (!id) {
	if (rb_is_class_name(iv)) {
	    return Qfalse;
	}
	else {
	    rb_name_error_str(iv, "`%"PRIsVALUE"' is not allowed as a class variable name",
			      QUOTE(iv));
	}
    }
    if (!rb_is_class_id(id)) {
	rb_name_error(id, "`%"PRIsVALUE"' is not allowed as a class variable name",
		      QUOTE_ID(id));
    }
    return rb_cvar_defined(obj, id);
}

#class_variable_get(symbol) ⇒ Object #class_variable_get(string) ⇒ Object

Returns the value of the given class variable (or throws a NameError exception). The @@ part of the variable name should be included for regular class variables. String arguments are converted to symbols.

class Fred
  @@foo = 99
end
Fred.class_variable_get(:@@foo)     #=> 99

Overloads:



2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
# File 'object.c', line 2473

static VALUE
rb_mod_cvar_get(VALUE obj, VALUE iv)
{
    ID id = rb_check_id(&iv);

    if (!id) {
	if (rb_is_class_name(iv)) {
	    rb_name_error_str(iv, "uninitialized class variable %"PRIsVALUE" in %"PRIsVALUE"",
			      iv, rb_class_name(obj));
	}
	else {
	    rb_name_error_str(iv, "`%"PRIsVALUE"' is not allowed as a class variable name",
			      QUOTE(iv));
	}
    }
    if (!rb_is_class_id(id)) {
	rb_name_error(id, "`%"PRIsVALUE"' is not allowed as a class variable name",
		      QUOTE_ID(id));
    }
    return rb_cvar_get(obj, id);
}

#class_variable_set(symbol, obj) ⇒ Object #class_variable_set(string, obj) ⇒ Object

Sets the class variable named by symbol to the given object. If the class variable name is passed as a string, that string is converted to a symbol.

class Fred
  @@foo = 99
  def foo
    @@foo
  end
end
Fred.class_variable_set(:@@foo, 101)     #=> 101
Fred.new.foo                             #=> 101

Overloads:

  • #class_variable_set(symbol, obj) ⇒ Object

    Returns:

  • #class_variable_set(string, obj) ⇒ Object

    Returns:



2515
2516
2517
2518
2519
2520
2521
# File 'object.c', line 2515

static VALUE
rb_mod_cvar_set(VALUE obj, VALUE iv, VALUE val)
{
    ID id = id_for_setter(iv, class, "`%"PRIsVALUE"' is not allowed as a class variable name");
    rb_cvar_set(obj, id, val);
    return val;
}

#class_variables(inherit = true) ⇒ Array

Returns an array of the names of class variables in mod. This includes the names of class variables in any included modules, unless the inherit parameter is set to false.

class One
  @@var1 = 1
end
class Two < One
  @@var2 = 2
end
One.class_variables          #=> [:@@var1]
Two.class_variables          #=> [:@@var2, :@@var1]
Two.class_variables(false)   #=> [:@@var2]

Returns:



2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
# File 'variable.c', line 2527

VALUE
rb_mod_class_variables(int argc, VALUE *argv, VALUE mod)
{
    VALUE inherit;
    st_table *tbl;

    if (argc == 0) {
	inherit = Qtrue;
    }
    else {
	rb_scan_args(argc, argv, "01", &inherit);
    }
    if (RTEST(inherit)) {
	tbl = mod_cvar_of(mod, 0);
    }
    else {
	tbl = mod_cvar_at(mod, 0);
    }
    return cvar_list(tbl);
}

#const_defined?(sym, inherit = true) ⇒ Boolean #const_defined?(str, inherit = true) ⇒ Boolean

Says whether mod or its ancestors have a constant with the given name:

Float.const_defined?(:EPSILON)      #=> true, found in Float itself
Float.const_defined?("String")      #=> true, found in Object (ancestor)
BasicObject.const_defined?(:Hash)   #=> false

If mod is a Module, additionally Object and its ancestors are checked:

Math.const_defined?(:String)   #=> true, found in Object

In each of the checked classes or modules, if the constant is not present but there is an autoload for it, true is returned directly without autoloading:

module Admin
  autoload :User, 'admin/user'
end
Admin.const_defined?(:User)   #=> true

If the constant is not found the callback const_missing is not called and the method returns false.

If inherit is false, the lookup only checks the constants in the receiver:

IO.const_defined?(:SYNC)          #=> true, found in File::Constants (ancestor)
IO.const_defined?(:SYNC, false)   #=> false, not found in IO itself

In this case, the same logic for autoloading applies.

If the argument is not a valid constant name a NameError is raised with the message “wrong constant name name”:

Hash.const_defined? 'foobar'   #=> NameError: wrong constant name foobar

Overloads:

  • #const_defined?(sym, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)
  • #const_defined?(str, inherit = true) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
# File 'object.c', line 2245

static VALUE
rb_mod_const_defined(int argc, VALUE *argv, VALUE mod)
{
    VALUE name, recur;
    rb_encoding *enc;
    const char *pbeg, *p, *path, *pend;
    ID id;

    if (argc == 1) {
	name = argv[0];
	recur = Qtrue;
    }
    else {
	rb_scan_args(argc, argv, "11", &name, &recur);
    }

    if (SYMBOL_P(name)) {
	id = SYM2ID(name);
	if (!rb_is_const_id(id)) goto wrong_id;
	return RTEST(recur) ? rb_const_defined(mod, id) : rb_const_defined_at(mod, id);
    }

    path = StringValuePtr(name);
    enc = rb_enc_get(name);

    if (!rb_enc_asciicompat(enc)) {
	rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
    }

    pbeg = p = path;
    pend = path + RSTRING_LEN(name);

    if (p >= pend || !*p) {
      wrong_name:
	rb_raise(rb_eNameError, "wrong constant name %"PRIsVALUE,
		 QUOTE(name));
    }

    if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
	mod = rb_cObject;
	p += 2;
	pbeg = p;
    }

    while (p < pend) {
	VALUE part;
	long len, beglen;

	while (p < pend && *p != ':') p++;

	if (pbeg == p) goto wrong_name;

	id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
	beglen = pbeg-path;

	if (p < pend && p[0] == ':') {
	    if (p + 2 >= pend || p[1] != ':') goto wrong_name;
	    p += 2;
	    pbeg = p;
	}

	if (!id) {
	    part = rb_str_subseq(name, beglen, len);
	    OBJ_FREEZE(part);
	    if (!ISUPPER(*pbeg) || !rb_is_const_name(part)) {
		rb_name_error_str(part, "wrong constant name %"PRIsVALUE,
				  QUOTE(part));
	    }
	    else {
		return Qfalse;
	    }
	}
	if (!rb_is_const_id(id)) {
	  wrong_id:
	    rb_name_error(id, "wrong constant name %"PRIsVALUE,
			  QUOTE_ID(id));
	}
	if (RTEST(recur)) {
	    if (!rb_const_defined(mod, id))
		return Qfalse;
	    mod = rb_const_get(mod, id);
	}
	else {
	    if (!rb_const_defined_at(mod, id))
		return Qfalse;
	    mod = rb_const_get_at(mod, id);
	}
	recur = Qfalse;

	if (p < pend && !RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
	    rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
		     QUOTE(name));
	}
    }

    return Qtrue;
}

#const_get(sym, inherit = true) ⇒ Object #const_get(str, inherit = true) ⇒ Object

Checks for a constant with the given name in mod. If inherit is set, the lookup will also search the ancestors (and Object if mod is a Module).

The value of the constant is returned if a definition is found, otherwise a NameError is raised.

Math.const_get(:PI)   #=> 3.14159265358979

This method will recursively look up constant names if a namespaced class name is provided. For example:

module Foo; class Bar; end end
Object.const_get 'Foo::Bar'

The inherit flag is respected on each lookup. For example:

module Foo
  class Bar
    VAL = 10
  end

  class Baz < Bar; end
end

Object.const_get 'Foo::Baz::VAL'         # => 10
Object.const_get 'Foo::Baz::VAL', false  # => NameError

If the argument is not a valid constant name a NameError will be raised with a warning “wrong constant name”.

Object.const_get ‘foobar’ #=> NameError: wrong constant name foobar

Overloads:

  • #const_get(sym, inherit = true) ⇒ Object

    Returns:

  • #const_get(str, inherit = true) ⇒ Object

    Returns:



2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
# File 'object.c', line 2084

static VALUE
rb_mod_const_get(int argc, VALUE *argv, VALUE mod)
{
    VALUE name, recur;
    rb_encoding *enc;
    const char *pbeg, *p, *path, *pend;
    ID id;

    if (argc == 1) {
	name = argv[0];
	recur = Qtrue;
    }
    else {
	rb_scan_args(argc, argv, "11", &name, &recur);
    }

    if (SYMBOL_P(name)) {
	id = SYM2ID(name);
	if (!rb_is_const_id(id)) goto wrong_id;
	return RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id);
    }

    path = StringValuePtr(name);
    enc = rb_enc_get(name);

    if (!rb_enc_asciicompat(enc)) {
	rb_raise(rb_eArgError, "invalid class path encoding (non ASCII)");
    }

    pbeg = p = path;
    pend = path + RSTRING_LEN(name);

    if (p >= pend || !*p) {
      wrong_name:
	rb_raise(rb_eNameError, "wrong constant name %"PRIsVALUE,
		 QUOTE(name));
    }

    if (p + 2 < pend && p[0] == ':' && p[1] == ':') {
	mod = rb_cObject;
	p += 2;
	pbeg = p;
    }

    while (p < pend) {
	VALUE part;
	long len, beglen;

	while (p < pend && *p != ':') p++;

	if (pbeg == p) goto wrong_name;

	id = rb_check_id_cstr(pbeg, len = p-pbeg, enc);
	beglen = pbeg-path;

	if (p < pend && p[0] == ':') {
	    if (p + 2 >= pend || p[1] != ':') goto wrong_name;
	    p += 2;
	    pbeg = p;
	}

	if (!RB_TYPE_P(mod, T_MODULE) && !RB_TYPE_P(mod, T_CLASS)) {
	    rb_raise(rb_eTypeError, "%"PRIsVALUE" does not refer to class/module",
		     QUOTE(name));
	}

	if (!id) {
	    part = rb_str_subseq(name, beglen, len);
	    OBJ_FREEZE(part);
	    if (!ISUPPER(*pbeg) || !rb_is_const_name(part)) {
		rb_name_error_str(part, "wrong constant name %"PRIsVALUE,
				  QUOTE(part));
	    }
	    else if (!rb_method_basic_definition_p(CLASS_OF(mod), id_const_missing)) {
		id = rb_intern_str(part);
	    }
	    else {
		rb_name_error_str(part, "uninitialized constant %"PRIsVALUE"%"PRIsVALUE,
				  rb_str_subseq(name, 0, beglen),
				  QUOTE(part));
	    }
	}
	if (!rb_is_const_id(id)) {
	  wrong_id:
	    rb_name_error(id, "wrong constant name %"PRIsVALUE,
			  QUOTE_ID(id));
	}
	mod = RTEST(recur) ? rb_const_get(mod, id) : rb_const_get_at(mod, id);
    }

    return mod;
}

#const_missing(sym) ⇒ Object

Invoked when a reference is made to an undefined constant in mod. It is passed a symbol for the undefined constant, and returns a value to be used for that constant. The following code is an example of the same:

def Foo.const_missing(name)
  name # return the constant name as Symbol
end

Foo::UNDEFINED_CONST    #=> :UNDEFINED_CONST: symbol returned

In the next example when a reference is made to an undefined constant, it attempts to load a file whose name is the lowercase version of the constant (thus class Fred is assumed to be in file fred.rb). If found, it returns the loaded class. It therefore implements an autoload feature similar to Kernel#autoload and Module#autoload.

def Object.const_missing(name)
  @looked_for ||= {}
  str_name = name.to_s
  raise "Class not found: #{name}" if @looked_for[str_name]
  @looked_for[str_name] = 1
  file = str_name.downcase
  require file
  klass = const_get(name)
  return klass if klass
  raise "Class not found: #{name}"
end

Returns:



1518
1519
1520
1521
1522
1523
1524
1525
# File 'variable.c', line 1518

VALUE
rb_mod_const_missing(VALUE klass, VALUE name)
{
    rb_vm_pop_cfunc_frame();
    uninitialized_constant(klass, rb_to_id(name));

    UNREACHABLE;
}

#const_set(sym, obj) ⇒ Object #const_set(str, obj) ⇒ Object

Sets the named constant to the given object, returning that object. Creates a new constant if no constant with the given name previously existed.

Math.const_set("HIGH_SCHOOL_PI", 22.0/7.0)   #=> 3.14285714285714
Math::HIGH_SCHOOL_PI - Math::PI              #=> 0.00126448926734968

If sym or str is not a valid constant name a NameError will be raised with a warning “wrong constant name”.

Object.const_set(‘foobar’, 42) #=> NameError: wrong constant name foobar

Overloads:



2196
2197
2198
2199
2200
2201
2202
# File 'object.c', line 2196

static VALUE
rb_mod_const_set(VALUE mod, VALUE name, VALUE value)
{
    ID id = id_for_setter(name, const, "wrong constant name %"PRIsVALUE);
    rb_const_set(mod, id, value);
    return value;
}

#constants(inherit = true) ⇒ Array

Returns an array of the names of the constants accessible in mod. This includes the names of constants in any included modules (example at start of section), unless the inherit parameter is set to false.

IO.constants.include?(:SYNC)        #=> true
IO.constants(false).include?(:SYNC) #=> false

Also see Module::const_defined?.

Returns:



2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
# File 'variable.c', line 2067

VALUE
rb_mod_constants(int argc, VALUE *argv, VALUE mod)
{
    VALUE inherit;

    if (argc == 0) {
	inherit = Qtrue;
    }
    else {
	rb_scan_args(argc, argv, "01", &inherit);
    }

    if (RTEST(inherit)) {
	return rb_const_list(rb_mod_const_of(mod, 0));
    }
    else {
	return rb_local_constants(mod);
    }
}

#define_method(symbol, method) ⇒ Object (private) #define_method(symbol) { ... } ⇒ Object (private)

Defines an instance method in the receiver. The method parameter can be a Proc, a Method or an UnboundMethod object. If a block is specified, it is used as the method body. This block is evaluated using instance_eval, a point that is tricky to demonstrate because define_method is private. (This is why we resort to the send hack in this example.)

class A
  def fred
    puts "In Fred"
  end
  def create_method(name, &block)
    self.class.send(:define_method, name, &block)
  end
  define_method(:wilma) { puts "Charge it!" }
end
class B < A
  define_method(:barney, instance_method(:fred))
end
a = B.new
a.barney
a.wilma
a.create_method(:betty) { p self }
a.betty

produces:

In Fred
Charge it!
#<B:0x401b39e8>

Overloads:

  • #define_method(symbol) { ... } ⇒ Object

    Yields:



1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
# File 'proc.c', line 1602

static VALUE
rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
{
    ID id;
    VALUE body;
    int noex = NOEX_PUBLIC;
    const NODE *cref = rb_vm_cref_in_context(mod);

    if (cref && cref->nd_clss == mod) {
	noex = (int)cref->nd_visi;
    }

    if (argc == 1) {
	id = rb_to_id(argv[0]);
	body = rb_block_lambda();
    }
    else {
	rb_check_arity(argc, 1, 2);
	id = rb_to_id(argv[0]);
	body = argv[1];
	if (!rb_obj_is_method(body) && !rb_obj_is_proc(body)) {
	    rb_raise(rb_eTypeError,
		     "wrong argument type %s (expected Proc/Method)",
		     rb_obj_classname(body));
	}
    }

    if (rb_obj_is_method(body)) {
	struct METHOD *method = (struct METHOD *)DATA_PTR(body);
	VALUE rclass = method->rclass;
	if (rclass != mod && !RB_TYPE_P(rclass, T_MODULE) &&
	    !RTEST(rb_class_inherited_p(mod, rclass))) {
	    if (FL_TEST(rclass, FL_SINGLETON)) {
		rb_raise(rb_eTypeError,
			 "can't bind singleton method to a different class");
	    }
	    else {
		rb_raise(rb_eTypeError,
			 "bind argument must be a subclass of % "PRIsVALUE,
			 rb_class_name(rclass));
	    }
	}
	rb_method_entry_set(mod, id, method->me, noex);
	if (noex == NOEX_MODFUNC) {
	    rb_method_entry_set(rb_singleton_class(mod), id, method->me, NOEX_PUBLIC);
	}
	RB_GC_GUARD(body);
    }
    else if (rb_obj_is_proc(body)) {
	rb_proc_t *proc;
	body = proc_dup(body);
	GetProcPtr(body, proc);
	if (BUILTIN_TYPE(proc->block.iseq) != T_NODE) {
	    proc->block.iseq->defined_method_id = id;
	    RB_OBJ_WRITE(proc->block.iseq->self, &proc->block.iseq->klass, mod);
	    proc->is_lambda = TRUE;
	    proc->is_from_method = TRUE;
	    proc->block.klass = mod;
	}
	rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)body, noex);
	if (noex == NOEX_MODFUNC) {
	    rb_add_method(rb_singleton_class(mod), id, VM_METHOD_TYPE_BMETHOD, (void *)body, NOEX_PUBLIC);
	}
    }
    else {
	/* type error */
	rb_raise(rb_eTypeError, "wrong argument type (expected Proc/Method)");
    }

    return ID2SYM(id);
}

#extend_object(obj) ⇒ Object (private)

Extends the specified object by adding this module’s constants and methods (which are added as singleton methods). This is the callback method used by Object#extend.

module Picky
  def Picky.extend_object(o)
    if String === o
      puts "Can't add Picky to a String"
    else
      puts "Picky added to #{o.class}"
      super
    end
  end
end
(s = Array.new).extend Picky  # Call Object.extend
(s = "quick brown fox").extend Picky

produces:

Picky added to Array
Can't add Picky to a String

Returns:



1350
1351
1352
1353
1354
1355
# File 'eval.c', line 1350

static VALUE
rb_mod_extend_object(VALUE mod, VALUE obj)
{
    rb_extend_object(obj, mod);
    return obj;
}

#extendedObject (private)

Not documented



923
924
925
926
927
# File 'object.c', line 923

static VALUE
rb_obj_dummy(void)
{
    return Qnil;
}

#freezeObject

Prevents further modifications to mod.

This method returns self.



1524
1525
1526
1527
1528
1529
# File 'object.c', line 1524

static VALUE
rb_mod_freeze(VALUE mod)
{
    rb_class_name(mod);
    return rb_obj_freeze(mod);
}

#includeself

Invokes Module.append_features on each parameter in reverse order.

Returns:

  • (self)


1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
# File 'eval.c', line 1024

static VALUE
rb_mod_include(int argc, VALUE *argv, VALUE module)
{
    int i;
    ID id_append_features, id_included;

    CONST_ID(id_append_features, "append_features");
    CONST_ID(id_included, "included");

    for (i = 0; i < argc; i++)
	Check_Type(argv[i], T_MODULE);
    while (argc--) {
	rb_funcall(argv[argc], id_append_features, 1, module);
	rb_funcall(argv[argc], id_included, 1, module);
    }
    return module;
}

#include?Boolean

Returns true if module is included in mod or one of mod’s ancestors.

module A
end
class B
  include A
end
class C < B
end
B.include?(A)   #=> true
C.include?(A)   #=> true
A.include?(A)   #=> false

Returns:

  • (Boolean)

Returns:

  • (Boolean)


1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
# File 'class.c', line 1006

VALUE
rb_mod_include_p(VALUE mod, VALUE mod2)
{
    VALUE p;

    Check_Type(mod2, T_MODULE);
    for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
	if (BUILTIN_TYPE(p) == T_ICLASS) {
	    if (RBASIC(p)->klass == mod2) return Qtrue;
	}
    }
    return Qfalse;
}

#includedObject (private)

Not documented



923
924
925
926
927
# File 'object.c', line 923

static VALUE
rb_obj_dummy(void)
{
    return Qnil;
}

#included_modulesArray

Returns the list of modules included in mod.

module Mixin
end

module Outer
  include Mixin
end

Mixin.included_modules   #=> []
Outer.included_modules   #=> [Mixin]

Returns:



970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
# File 'class.c', line 970

VALUE
rb_mod_included_modules(VALUE mod)
{
    VALUE ary = rb_ary_new();
    VALUE p;
    VALUE origin = RCLASS_ORIGIN(mod);

    for (p = RCLASS_SUPER(mod); p; p = RCLASS_SUPER(p)) {
	if (p != origin && BUILTIN_TYPE(p) == T_ICLASS) {
	    VALUE m = RBASIC(p)->klass;
	    if (RB_TYPE_P(m, T_MODULE))
		rb_ary_push(ary, m);
	}
    }
    return ary;
}

#initialize_copyObject

:nodoc:



299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# File 'class.c', line 299

VALUE
rb_mod_init_copy(VALUE clone, VALUE orig)
{
    if (RB_TYPE_P(clone, T_CLASS)) {
	class_init_copy_check(clone, orig);
    }
    if (!OBJ_INIT_COPY(clone, orig)) return clone;
    if (!FL_TEST(CLASS_OF(clone), FL_SINGLETON)) {
	RBASIC_SET_CLASS(clone, rb_singleton_class_clone(orig));
	rb_singleton_class_attached(RBASIC(clone)->klass, (VALUE)clone);
    }
    RCLASS_SET_SUPER(clone, RCLASS_SUPER(orig));
    RCLASS_EXT(clone)->allocator = RCLASS_EXT(orig)->allocator;
    if (RCLASS_IV_TBL(clone)) {
	st_free_table(RCLASS_IV_TBL(clone));
	RCLASS_IV_TBL(clone) = 0;
    }
    if (RCLASS_CONST_TBL(clone)) {
	rb_free_const_table(RCLASS_CONST_TBL(clone));
	RCLASS_CONST_TBL(clone) = 0;
    }
    if (RCLASS_M_TBL_WRAPPER(clone)) {
	rb_free_m_tbl_wrapper(RCLASS_M_TBL_WRAPPER(clone));
	RCLASS_M_TBL_WRAPPER(clone) = 0;
    }
    if (RCLASS_IV_TBL(orig)) {
	st_data_t id;

	RCLASS_IV_TBL(clone) = rb_st_copy(clone, RCLASS_IV_TBL(orig));
	CONST_ID(id, "__tmp_classpath__");
	st_delete(RCLASS_IV_TBL(clone), &id, 0);
	CONST_ID(id, "__classpath__");
	st_delete(RCLASS_IV_TBL(clone), &id, 0);
	CONST_ID(id, "__classid__");
	st_delete(RCLASS_IV_TBL(clone), &id, 0);
    }
    if (RCLASS_CONST_TBL(orig)) {
	struct clone_const_arg arg;

	RCLASS_CONST_TBL(clone) = st_init_numtable();
	arg.klass = clone;
	arg.tbl = RCLASS_CONST_TBL(clone);
	st_foreach(RCLASS_CONST_TBL(orig), clone_const_i, (st_data_t)&arg);
    }
    if (RCLASS_M_TBL(orig)) {
	RCLASS_M_TBL_INIT(clone);
	st_foreach(RCLASS_M_TBL(orig), clone_method_i, (st_data_t)clone);
    }

    return clone;
}

#instance_method(symbol) ⇒ Object

Returns an UnboundMethod representing the given instance method in mod.

class Interpreter
  def do_a() print "there, "; end
  def do_d() print "Hello ";  end
  def do_e() print "!\n";     end
  def do_v() print "Dave";    end
  Dispatcher = {
    "a" => instance_method(:do_a),
    "d" => instance_method(:do_d),
    "e" => instance_method(:do_e),
    "v" => instance_method(:do_v)
  }
  def interpret(string)
    string.each_char {|b| Dispatcher[b].bind(self).call }
  end
end

interpreter = Interpreter.new
interpreter.interpret('dave')

produces:

Hello there, Dave!


1538
1539
1540
1541
1542
1543
1544
1545
1546
# File 'proc.c', line 1538

static VALUE
rb_mod_instance_method(VALUE mod, VALUE vid)
{
    ID id = rb_check_id(&vid);
    if (!id) {
	rb_method_name_error(mod, vid);
    }
    return mnew(mod, Qundef, id, rb_cUnboundMethod, FALSE);
}

#instance_methods(include_super = true) ⇒ Array

Returns an array containing the names of the public and protected instance methods in the receiver. For a module, these are the public and protected methods; for a class, they are the instance (not singleton) methods. With no argument, or with an argument that is false, the instance methods in mod are returned, otherwise the methods in mod and mod’s superclasses are returned.

module A
  def method1()  end
end
class B
  def method2()  end
end
class C < B
  def method3()  end
end

A.instance_methods                #=> [:method1]
B.instance_methods(false)         #=> [:method2]
C.instance_methods(false)         #=> [:method3]
C.instance_methods(true).length   #=> 43

Returns:



1193
1194
1195
1196
1197
# File 'class.c', line 1193

VALUE
rb_class_instance_methods(int argc, VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_i);
}

#method_addedObject (private)

Not documented



923
924
925
926
927
# File 'object.c', line 923

static VALUE
rb_obj_dummy(void)
{
    return Qnil;
}

#method_defined?(symbol) ⇒ Boolean #method_defined?(string) ⇒ Boolean

Returns true if the named method is defined by mod (or its included modules and, if mod is a class, its ancestors). Public and protected methods are matched. String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1    #=> true
C.method_defined? "method1"   #=> true
C.method_defined? "method2"   #=> true
C.method_defined? "method3"   #=> true
C.method_defined? "method4"   #=> false

Overloads:

  • #method_defined?(symbol) ⇒ Boolean

    Returns:

    • (Boolean)
  • #method_defined?(string) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
# File 'vm_method.c', line 1037

static VALUE
rb_mod_method_defined(VALUE mod, VALUE mid)
{
    ID id = rb_check_id(&mid);
    if (!id || !rb_method_boundp(mod, id, 1)) {
	return Qfalse;
    }
    return Qtrue;

}

#method_removedObject (private)

Not documented



923
924
925
926
927
# File 'object.c', line 923

static VALUE
rb_obj_dummy(void)
{
    return Qnil;
}

#method_undefinedObject (private)

Not documented



923
924
925
926
927
# File 'object.c', line 923

static VALUE
rb_obj_dummy(void)
{
    return Qnil;
}

#class_eval(string[, filename [, lineno]]) ⇒ Object #module_eval { ... } ⇒ Object

Evaluates the string or block in the context of mod, except that when a block is given, constant/class variable lookup is not affected. This can be used to add methods to a class. module_eval returns the result of evaluating its argument. The optional filename and lineno parameters set the text for error messages.

class Thing
end
a = %q{def hello() "Hello there!" end}
Thing.module_eval(a)
puts Thing.new.hello()
Thing.module_eval("invalid code", "dummy", 123)

produces:

Hello there!
dummy:123:in `module_eval': undefined local variable
    or method `code' for Thing:Class

Overloads:

  • #class_eval(string[, filename [, lineno]]) ⇒ Object

    Returns:

  • #module_eval { ... } ⇒ Object

    Yields:

    Returns:



1678
1679
1680
1681
1682
# File 'vm_eval.c', line 1678

VALUE
rb_mod_module_eval(int argc, VALUE *argv, VALUE mod)
{
    return specific_eval(argc, argv, mod, mod);
}

#module_exec(arg...) {|var...| ... } ⇒ Object #class_exec(arg...) {|var...| ... } ⇒ Object

Evaluates the given block in the context of the class/module. The method defined in the block will belong to the receiver. Any arguments passed to the method will be passed to the block. This can be used if the block needs to access instance variables.

class Thing
end
Thing.class_exec{
  def hello() "Hello there!" end
}
puts Thing.new.hello()

produces:

Hello there!

Overloads:

  • #module_exec(arg...) {|var...| ... } ⇒ Object

    Yields:

    • (var...)

    Returns:

  • #class_exec(arg...) {|var...| ... } ⇒ Object

    Yields:

    • (var...)

    Returns:



1706
1707
1708
1709
1710
# File 'vm_eval.c', line 1706

VALUE
rb_mod_module_exec(int argc, VALUE *argv, VALUE mod)
{
    return yield_under(mod, mod, rb_ary_new4(argc, argv));
}

#module_function(symbol, ...) ⇒ self (private) #module_function(string, ...) ⇒ self (private)

Creates module functions for the named methods. These functions may be called with the module as a receiver, and also become available as instance methods to classes that mix in the module. Module functions are copies of the original, and so may be changed independently. The instance-method versions are made private. If used with no arguments, subsequently defined methods become module functions. String arguments are converted to symbols.

module Mod
  def one
    "This is one"
  end
  module_function :one
end
class Cls
  include Mod
  def call_one
    one
  end
end
Mod.one     #=> "This is one"
c = Cls.new
c.call_one  #=> "This is one"
module Mod
  def one
    "This is the new one"
  end
end
Mod.one     #=> "This is one"
c.call_one  #=> "This is the new one"

Overloads:

  • #module_function(symbol, ...) ⇒ self

    Returns:

    • (self)
  • #module_function(string, ...) ⇒ self

    Returns:

    • (self)


1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
# File 'vm_method.c', line 1542

static VALUE
rb_mod_modfunc(int argc, VALUE *argv, VALUE module)
{
    int i;
    ID id;
    const rb_method_entry_t *me;

    if (!RB_TYPE_P(module, T_MODULE)) {
	rb_raise(rb_eTypeError, "module_function must be called for modules");
    }

    if (argc == 0) {
	SCOPE_SET(NOEX_MODFUNC);
	return module;
    }

    set_method_visibility(module, argc, argv, NOEX_PRIVATE);

    for (i = 0; i < argc; i++) {
	VALUE m = module;

	id = rb_to_id(argv[i]);
	for (;;) {
	    me = search_method(m, id, 0);
	    if (me == 0) {
		me = search_method(rb_cObject, id, 0);
	    }
	    if (UNDEFINED_METHOD_ENTRY_P(me)) {
		rb_print_undef(module, id, 0);
	    }
	    if (me->def->type != VM_METHOD_TYPE_ZSUPER) {
		break; /* normal case: need not to follow 'super' link */
	    }
	    m = RCLASS_SUPER(m);
	    if (!m)
		break;
	}
	rb_method_entry_set(rb_singleton_class(module), id, me, NOEX_PUBLIC);
    }
    return module;
}

#nameString

Returns the name of the module mod. Returns nil for anonymous modules.

Returns:



205
206
207
208
209
210
211
212
213
# File 'variable.c', line 205

VALUE
rb_mod_name(VALUE mod)
{
    int permanent;
    VALUE path = classname(mod, &permanent);

    if (!NIL_P(path)) return rb_str_dup(path);
    return path;
}

#prependself

Invokes Module.prepend_features on each parameter in reverse order.

Returns:

  • (self)


1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
# File 'eval.c', line 1072

static VALUE
rb_mod_prepend(int argc, VALUE *argv, VALUE module)
{
    int i;
    ID id_prepend_features, id_prepended;

    CONST_ID(id_prepend_features, "prepend_features");
    CONST_ID(id_prepended, "prepended");
    for (i = 0; i < argc; i++)
	Check_Type(argv[i], T_MODULE);
    while (argc--) {
	rb_funcall(argv[argc], id_prepend_features, 1, module);
	rb_funcall(argv[argc], id_prepended, 1, module);
    }
    return module;
}

#prepend_features(mod) ⇒ Object (private)

When this module is prepended in another, Ruby calls prepend_features in this module, passing it the receiving module in mod. Ruby’s default implementation is to overlay the constants, methods, and module variables of this module to mod if this module has not already been added to mod or one of its ancestors. See also Module#prepend.



1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
# File 'eval.c', line 1054

static VALUE
rb_mod_prepend_features(VALUE module, VALUE prepend)
{
    if (!CLASS_OR_MODULE_P(prepend)) {
	Check_Type(prepend, T_CLASS);
    }
    rb_prepend_module(prepend, module);

    return module;
}

#prependedObject (private)

Not documented



923
924
925
926
927
# File 'object.c', line 923

static VALUE
rb_obj_dummy(void)
{
    return Qnil;
}

#privateself (private) #private(symbol, ...) ⇒ self (private) #private(string, ...) ⇒ self (private)

With no arguments, sets the default visibility for subsequently defined methods to private. With arguments, sets the named methods to have private visibility. String arguments are converted to symbols.

module Mod
  def a()  end
  def b()  end
  private
  def c()  end
  private :a
end
Mod.private_instance_methods   #=> [:a, :c]

Overloads:

  • #privateself

    Returns:

    • (self)
  • #private(symbol, ...) ⇒ self

    Returns:

    • (self)
  • #private(string, ...) ⇒ self

    Returns:

    • (self)


1418
1419
1420
1421
1422
# File 'vm_method.c', line 1418

static VALUE
rb_mod_private(int argc, VALUE *argv, VALUE module)
{
    return set_visibility(argc, argv, module, NOEX_PRIVATE);
}

#private_class_method(symbol, ...) ⇒ Object #private_class_method(string, ...) ⇒ Object

Makes existing class methods private. Often used to hide the default constructor new.

String arguments are converted to symbols.

class SimpleSingleton  # Not thread safe
  private_class_method :new
  def SimpleSingleton.create(*args, &block)
    @me = new(*args, &block) if ! @me
    @me
  end
end


1460
1461
1462
1463
1464
1465
# File 'vm_method.c', line 1460

static VALUE
rb_mod_private_method(int argc, VALUE *argv, VALUE obj)
{
    set_method_visibility(rb_singleton_class(obj), argc, argv, NOEX_PRIVATE);
    return obj;
}

#private_constant(symbol, ...) ⇒ Object

Makes a list of existing constants private.



2287
2288
2289
2290
2291
2292
# File 'variable.c', line 2287

VALUE
rb_mod_private_constant(int argc, VALUE *argv, VALUE obj)
{
    set_const_visibility(obj, argc, argv, CONST_PRIVATE);
    return obj;
}

#private_instance_methods(include_super = true) ⇒ Array

Returns a list of the private instance methods defined in mod. If the optional parameter is not false, the methods of any ancestors are included.

module Mod
  def method1()  end
  private :method1
  def method2()  end
end
Mod.instance_methods           #=> [:method2]
Mod.private_instance_methods   #=> [:method1]

Returns:



1231
1232
1233
1234
1235
# File 'class.c', line 1231

VALUE
rb_class_private_instance_methods(int argc, VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_priv_i);
}

#private_method_defined?(symbol) ⇒ Boolean #private_method_defined?(string) ⇒ Boolean

Returns true if the named private method is defined by _ mod_ (or its included modules and, if mod is a class, its ancestors). String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  private
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1            #=> true
C.private_method_defined? "method1"   #=> false
C.private_method_defined? "method2"   #=> true
C.method_defined? "method2"           #=> false

Overloads:

  • #private_method_defined?(symbol) ⇒ Boolean

    Returns:

    • (Boolean)
  • #private_method_defined?(string) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


1126
1127
1128
1129
1130
# File 'vm_method.c', line 1126

static VALUE
rb_mod_private_method_defined(VALUE mod, VALUE mid)
{
    return check_definition(mod, mid, NOEX_PRIVATE);
}

#protectedself (private) #protected(symbol, ...) ⇒ self (private) #protected(string, ...) ⇒ self (private)

With no arguments, sets the default visibility for subsequently defined methods to protected. With arguments, sets the named methods to have protected visibility. String arguments are converted to symbols.

Overloads:

  • #protectedself

    Returns:

    • (self)
  • #protected(symbol, ...) ⇒ self

    Returns:

    • (self)
  • #protected(string, ...) ⇒ self

    Returns:

    • (self)


1391
1392
1393
1394
1395
# File 'vm_method.c', line 1391

static VALUE
rb_mod_protected(int argc, VALUE *argv, VALUE module)
{
    return set_visibility(argc, argv, module, NOEX_PROTECTED);
}

#protected_instance_methods(include_super = true) ⇒ Array

Returns a list of the protected instance methods defined in mod. If the optional parameter is not false, the methods of any ancestors are included.

Returns:



1208
1209
1210
1211
1212
# File 'class.c', line 1208

VALUE
rb_class_protected_instance_methods(int argc, VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_prot_i);
}

#protected_method_defined?(symbol) ⇒ Boolean #protected_method_defined?(string) ⇒ Boolean

Returns true if the named protected method is defined by mod (or its included modules and, if mod is a class, its ancestors). String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  protected
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1              #=> true
C.protected_method_defined? "method1"   #=> false
C.protected_method_defined? "method2"   #=> true
C.method_defined? "method2"             #=> true

Overloads:

  • #protected_method_defined?(symbol) ⇒ Boolean

    Returns:

    • (Boolean)
  • #protected_method_defined?(string) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


1160
1161
1162
1163
1164
# File 'vm_method.c', line 1160

static VALUE
rb_mod_protected_method_defined(VALUE mod, VALUE mid)
{
    return check_definition(mod, mid, NOEX_PROTECTED);
}

#publicself (private) #public(symbol, ...) ⇒ self (private) #public(string, ...) ⇒ self (private)

With no arguments, sets the default visibility for subsequently defined methods to public. With arguments, sets the named methods to have public visibility. String arguments are converted to symbols.

Overloads:

  • #publicself

    Returns:

    • (self)
  • #public(symbol, ...) ⇒ self

    Returns:

    • (self)
  • #public(string, ...) ⇒ self

    Returns:

    • (self)


1373
1374
1375
1376
1377
# File 'vm_method.c', line 1373

static VALUE
rb_mod_public(int argc, VALUE *argv, VALUE module)
{
    return set_visibility(argc, argv, module, NOEX_PUBLIC);
}

#public_class_method(symbol, ...) ⇒ Object #public_class_method(string, ...) ⇒ Object

Makes a list of existing class methods public.

String arguments are converted to symbols.



1434
1435
1436
1437
1438
1439
# File 'vm_method.c', line 1434

static VALUE
rb_mod_public_method(int argc, VALUE *argv, VALUE obj)
{
    set_method_visibility(rb_singleton_class(obj), argc, argv, NOEX_PUBLIC);
    return obj;
}

#public_constant(symbol, ...) ⇒ Object

Makes a list of existing constants public.



2301
2302
2303
2304
2305
2306
# File 'variable.c', line 2301

VALUE
rb_mod_public_constant(int argc, VALUE *argv, VALUE obj)
{
    set_const_visibility(obj, argc, argv, CONST_PUBLIC);
    return obj;
}

#public_instance_method(symbol) ⇒ Object

Similar to instance_method, searches public method only.



1555
1556
1557
1558
1559
1560
1561
1562
1563
# File 'proc.c', line 1555

static VALUE
rb_mod_public_instance_method(VALUE mod, VALUE vid)
{
    ID id = rb_check_id(&vid);
    if (!id) {
	rb_method_name_error(mod, vid);
    }
    return mnew(mod, Qundef, id, rb_cUnboundMethod, TRUE);
}

#public_instance_methods(include_super = true) ⇒ Array

Returns a list of the public instance methods defined in mod. If the optional parameter is not false, the methods of any ancestors are included.

Returns:



1246
1247
1248
1249
1250
# File 'class.c', line 1246

VALUE
rb_class_public_instance_methods(int argc, VALUE *argv, VALUE mod)
{
    return class_instance_method_list(argc, argv, mod, 0, ins_methods_pub_i);
}

#public_method_defined?(symbol) ⇒ Boolean #public_method_defined?(string) ⇒ Boolean

Returns true if the named public method is defined by mod (or its included modules and, if mod is a class, its ancestors). String arguments are converted to symbols.

module A
  def method1()  end
end
class B
  protected
  def method2()  end
end
class C < B
  include A
  def method3()  end
end

A.method_defined? :method1           #=> true
C.public_method_defined? "method1"   #=> true
C.public_method_defined? "method2"   #=> false
C.method_defined? "method2"          #=> true

Overloads:

  • #public_method_defined?(symbol) ⇒ Boolean

    Returns:

    • (Boolean)
  • #public_method_defined?(string) ⇒ Boolean

    Returns:

    • (Boolean)

Returns:

  • (Boolean)


1092
1093
1094
1095
1096
# File 'vm_method.c', line 1092

static VALUE
rb_mod_public_method_defined(VALUE mod, VALUE mid)
{
    return check_definition(mod, mid, NOEX_PUBLIC);
}

#refine(klass) { ... } ⇒ Object (private)

Refine klass in the receiver.

Returns an overlaid module.

Yields:



1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
# File 'eval.c', line 1238

static VALUE
rb_mod_refine(VALUE module, VALUE klass)
{
    VALUE refinement;
    ID id_refinements, id_activated_refinements,
       id_refined_class, id_defined_at;
    VALUE refinements, activated_refinements;
    rb_thread_t *th = GET_THREAD();
    rb_block_t *block = rb_vm_control_frame_block_ptr(th->cfp);

    if (!block) {
        rb_raise(rb_eArgError, "no block given");
    }
    if (block->proc) {
        rb_raise(rb_eArgError,
		 "can't pass a Proc as a block to Module#refine");
    }
    Check_Type(klass, T_CLASS);
    CONST_ID(id_refinements, "__refinements__");
    refinements = rb_attr_get(module, id_refinements);
    if (NIL_P(refinements)) {
	refinements = hidden_identity_hash_new();
	rb_ivar_set(module, id_refinements, refinements);
    }
    CONST_ID(id_activated_refinements, "__activated_refinements__");
    activated_refinements = rb_attr_get(module, id_activated_refinements);
    if (NIL_P(activated_refinements)) {
	activated_refinements = hidden_identity_hash_new();
	rb_ivar_set(module, id_activated_refinements,
		    activated_refinements);
    }
    refinement = rb_hash_lookup(refinements, klass);
    if (NIL_P(refinement)) {
	refinement = rb_module_new();
	RCLASS_SET_SUPER(refinement, klass);
	FL_SET(refinement, RMODULE_IS_REFINEMENT);
	CONST_ID(id_refined_class, "__refined_class__");
	rb_ivar_set(refinement, id_refined_class, klass);
	CONST_ID(id_defined_at, "__defined_at__");
	rb_ivar_set(refinement, id_defined_at, module);
	rb_hash_aset(refinements, klass, refinement);
	add_activated_refinement(activated_refinements, klass, refinement);
    }
    rb_yield_refine_block(refinement, activated_refinements);
    return refinement;
}

#remove_class_variable(sym) ⇒ Object

Removes the definition of the sym, returning that constant’s value.

class Dummy
  @@var = 99
  puts @@var
  remove_class_variable(:@@var)
  p(defined? @@var)
end

produces:

99
nil

Returns:



2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
# File 'variable.c', line 2568

VALUE
rb_mod_remove_cvar(VALUE mod, VALUE name)
{
    const ID id = rb_check_id(&name);
    st_data_t val, n = id;

    if (!id) {
	if (rb_is_class_name(name)) {
	    rb_name_error_str(name, "class variable %"PRIsVALUE" not defined for %"PRIsVALUE"",
			      name, rb_class_name(mod));
	}
	else {
	    rb_name_error_str(name, "wrong class variable name %"PRIsVALUE"", QUOTE(name));
	}
    }
    if (!rb_is_class_id(id)) {
	rb_name_error(id, "wrong class variable name %"PRIsVALUE"", QUOTE_ID(id));
    }
    rb_check_frozen(mod);
    if (RCLASS_IV_TBL(mod) && st_delete(RCLASS_IV_TBL(mod), &n, &val)) {
	return (VALUE)val;
    }
    if (rb_cvar_defined(mod, id)) {
	rb_name_error(id, "cannot remove %"PRIsVALUE" for %"PRIsVALUE"",
		 QUOTE_ID(id), rb_class_name(mod));
    }
    rb_name_error(id, "class variable %"PRIsVALUE" not defined for %"PRIsVALUE"",
		  QUOTE_ID(id), rb_class_name(mod));

    UNREACHABLE;
}

#remove_const(sym) ⇒ Object (private)

Removes the definition of the given constant, returning that constant’s previous value. If that constant referred to a module, this will not change that module’s name and can lead to confusion.

Returns:



1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
# File 'variable.c', line 1919

VALUE
rb_mod_remove_const(VALUE mod, VALUE name)
{
    const ID id = rb_check_id(&name);

    if (!id) {
	if (rb_is_const_name(name)) {
	    rb_name_error_str(name, "constant %"PRIsVALUE"::%"PRIsVALUE" not defined",
			      rb_class_name(mod), name);
	}
	else {
	    rb_name_error_str(name, "`%"PRIsVALUE"' is not allowed as a constant name",
			      QUOTE(name));
	}
    }
    if (!rb_is_const_id(id)) {
	rb_name_error(id, "`%"PRIsVALUE"' is not allowed as a constant name",
		      QUOTE_ID(id));
    }
    return rb_const_remove(mod, id);
}

#remove_method(symbol) ⇒ self (private) #remove_method(string) ⇒ self (private)

Removes the method identified by symbol from the current class. For an example, see Module.undef_method. String arguments are converted to symbols.

Overloads:

  • #remove_method(symbol) ⇒ self

    Returns:

    • (self)
  • #remove_method(string) ⇒ self

    Returns:

    • (self)


782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
# File 'vm_method.c', line 782

static VALUE
rb_mod_remove_method(int argc, VALUE *argv, VALUE mod)
{
    int i;

    for (i = 0; i < argc; i++) {
	VALUE v = argv[i];
	ID id = rb_check_id(&v);
	if (!id) {
	    rb_name_error_str(v, "method `%s' not defined in %s",
			      RSTRING_PTR(v), rb_class2name(mod));
	}
	remove_method(mod, id);
    }
    return mod;
}

#singleton_class?Boolean

Returns true if mod is a singleton class or false if it is an ordinary class or module.

class C
end
C.singleton_class?                  #=> false
C.singleton_class.singleton_class?  #=> true

Returns:

  • (Boolean)

Returns:

  • (Boolean)


2573
2574
2575
2576
2577
2578
2579
# File 'object.c', line 2573

static VALUE
rb_mod_singleton_p(VALUE klass)
{
    if (RB_TYPE_P(klass, T_CLASS) && FL_TEST(klass, FL_SINGLETON))
	return Qtrue;
    return Qfalse;
}

#to_sString Also known as: inspect

Returns a string representing this module or class. For basic classes and modules, this is the name. For singletons, we show information on the thing we’re attached to as well.

Returns:



1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
# File 'object.c', line 1480

static VALUE
rb_mod_to_s(VALUE klass)
{
    ID id_defined_at;
    VALUE refined_class, defined_at;

    if (FL_TEST(klass, FL_SINGLETON)) {
	VALUE s = rb_usascii_str_new2("#<Class:");
	VALUE v = rb_ivar_get(klass, id__attached__);

	if (CLASS_OR_MODULE_P(v)) {
	    rb_str_append(s, rb_inspect(v));
	}
	else {
	    rb_str_append(s, rb_any_to_s(v));
	}
	rb_str_cat2(s, ">");

	return s;
    }
    refined_class = rb_refinement_module_get_refined_class(klass);
    if (!NIL_P(refined_class)) {
	VALUE s = rb_usascii_str_new2("#<refinement:");

	rb_str_concat(s, rb_inspect(refined_class));
	rb_str_cat2(s, "@");
	CONST_ID(id_defined_at, "__defined_at__");
	defined_at = rb_attr_get(klass, id_defined_at);
	rb_str_concat(s, rb_inspect(defined_at));
	rb_str_cat2(s, ">");
	return s;
    }
    return rb_str_dup(rb_class_name(klass));
}

#undef_method(symbol) ⇒ self (private) #undef_method(string) ⇒ self (private)

Prevents the current class from responding to calls to the named method. Contrast this with remove_method, which deletes the method from the particular class; Ruby will still search superclasses and mixed-in modules for a possible receiver. String arguments are converted to symbols.

class Parent
  def hello
    puts "In parent"
  end
end
class Child < Parent
  def hello
    puts "In child"
  end
end

c = Child.new
c.hello

class Child
  remove_method :hello  # remove from child, still in parent
end
c.hello

class Child
  undef_method :hello   # prevent any calls to 'hello'
end
c.hello

produces:

In child
In parent
prog.rb:23: undefined method `hello' for #<Child:0x401b3bb4> (NoMethodError)

Overloads:

  • #undef_method(symbol) ⇒ self

    Returns:

    • (self)
  • #undef_method(string) ⇒ self

    Returns:

    • (self)


994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
# File 'vm_method.c', line 994

static VALUE
rb_mod_undef_method(int argc, VALUE *argv, VALUE mod)
{
    int i;
    for (i = 0; i < argc; i++) {
	VALUE v = argv[i];
	ID id = rb_check_id(&v);
	if (!id) {
	    rb_method_name_error(mod, v);
	}
	rb_undef(mod, id);
    }
    return mod;
}

#usingself (private)

Import class refinements from module into the current class or module definition.

Returns:

  • (self)


1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
# File 'eval.c', line 1293

static VALUE
mod_using(VALUE self, VALUE module)
{
    NODE *cref = rb_vm_cref();
    rb_control_frame_t *prev_cfp = previous_frame(GET_THREAD());

    if (prev_frame_func()) {
	rb_raise(rb_eRuntimeError,
		 "Module#using is not permitted in methods");
    }
    if (prev_cfp && prev_cfp->self != self) {
	rb_raise(rb_eRuntimeError, "Module#using is not called on self");
    }
    rb_using_module(cref, module);
    return self;
}