Module: Bitcoin::OpenSSL_EC

Extended by:
FFI::Library
Defined in:
lib/bitcoin/ffi/openssl.rb

Overview

autoload when you need to re-generate a public_key from only its private_key. ported from: github.com/sipa/bitcoin/blob/2d40fe4da9ea82af4b652b691a4185431d6e47a8/key.h

Constant Summary collapse

NID_secp256k1 =

rubocop:disable Naming/ConstantName

714
POINT_CONVERSION_COMPRESSED =
2
POINT_CONVERSION_UNCOMPRESSED =
4
VERSION_1_1_0_NUM =

OpenSSL 1.1.0 version as a numerical version value as defined in: www.openssl.org/docs/man1.1.0/man3/OpenSSL_version.html

0x10100000
OPENSSL_INIT_ENGINE_RDRAND =
0x00000200
OPENSSL_INIT_ENGINE_DYNAMIC =
0x00000400
OPENSSL_INIT_ENGINE_CRYPTODEV =
0x00001000
OPENSSL_INIT_ENGINE_CAPI =
0x00002000
OPENSSL_INIT_ENGINE_PADLOCK =
0x00004000
OPENSSL_INIT_ENGINE_ALL_BUILTIN =
(
  OPENSSL_INIT_ENGINE_RDRAND |
  OPENSSL_INIT_ENGINE_DYNAMIC |
  OPENSSL_INIT_ENGINE_CRYPTODEV |
  OPENSSL_INIT_ENGINE_CAPI |
  OPENSSL_INIT_ENGINE_PADLOCK
)
OPENSSL_INIT_LOAD_SSL_STRINGS =
0x00200000

Class Method Summary collapse

Class Method Details

.BN_num_bytes(ptr) ⇒ Object

rubocop:disable Naming/MethodName



120
121
122
# File 'lib/bitcoin/ffi/openssl.rb', line 120

def self.BN_num_bytes(ptr) # rubocop:disable Naming/MethodName
  (BN_num_bits(ptr) + 7) / 8
end

.ec_add(point0, point1) ⇒ Object



346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# File 'lib/bitcoin/ffi/openssl.rb', line 346

def self.ec_add(point0, point1)
  init_ffi_ssl

  eckey = EC_KEY_new_by_curve_name(NID_secp256k1)
  group = EC_KEY_get0_group(eckey)

  point_0_hex = point0.to_bn.to_s(16)
  point_0_pt = EC_POINT_hex2point(group, point_0_hex, nil, nil)
  point_1_hex = point1.to_bn.to_s(16)
  point_1_pt = EC_POINT_hex2point(group, point_1_hex, nil, nil)

  sum_point = EC_POINT_new(group)
  EC_POINT_add(group, sum_point, point_0_pt, point_1_pt, nil)
  hex = EC_POINT_point2hex(group, sum_point, POINT_CONVERSION_UNCOMPRESSED, nil)
  EC_KEY_free(eckey)
  EC_POINT_free(sum_point)
  hex
end

.init_ffi_sslObject



390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
# File 'lib/bitcoin/ffi/openssl.rb', line 390

def self.init_ffi_ssl
  @ssl_loaded ||= false
  return if @ssl_loaded

  if version >= VERSION_1_1_0_NUM
    OPENSSL_init_ssl(
      OPENSSL_INIT_LOAD_SSL_STRINGS | OPENSSL_INIT_ENGINE_ALL_BUILTIN,
      nil
    )
  else
    SSL_library_init()
    ERR_load_crypto_strings()
    SSL_load_error_strings()
  end

  RAND_poll()
  @ssl_loaded = true
end

.recover_compact(hash, signature) ⇒ Object



332
333
334
335
336
337
338
339
340
341
342
343
# File 'lib/bitcoin/ffi/openssl.rb', line 332

def self.recover_compact(hash, signature)
  return false if signature.bytesize != 65
  msg32 = FFI::MemoryPointer.new(:uchar, 32).put_bytes(0, hash)

  version = signature.unpack('C')[0]
  return false if version < 27 || version > 34

  compressed = version >= 31
  version -= 4 if compressed

  recover_public_key_from_signature(msg32.read_string(32), signature, version - 27, compressed)
end

.recover_public_key_from_signature(message_hash, signature, rec_id, is_compressed) ⇒ Object

Given the components of a signature and a selector value, recover and return the public key that generated the signature according to the algorithm in SEC1v2 section 4.1.6.

rec_id is an index from 0 to 3 that indicates which of the 4 possible keys is the correct one. Because the key recovery operation yields multiple potential keys, the correct key must either be stored alongside the signature, or you must be willing to try each rec_id in turn until you find one that outputs the key you are expecting.

If this method returns nil, it means recovery was not possible and rec_id should be iterated.

Given the above two points, a correct usage of this method is inside a for loop from 0 to 3, and if the output is nil OR a key that is not the one you expect, you try again with the next rec_id.

message_hash = hash of the signed message.
signature = the R and S components of the signature, wrapped.
rec_id = which possible key to recover.
is_compressed = whether or not the original pubkey was compressed.


165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# File 'lib/bitcoin/ffi/openssl.rb', line 165

def self.recover_public_key_from_signature(message_hash, signature, rec_id, is_compressed)
  return nil if rec_id < 0 || signature.bytesize != 65
  init_ffi_ssl

  signature = FFI::MemoryPointer.from_string(signature)
  # signature_bn = BN_bin2bn(signature, 65, BN_new())
  r = BN_bin2bn(signature[1], 32, BN_new())
  s = BN_bin2bn(signature[33], 32, BN_new())

  i = rec_id / 2
  eckey = EC_KEY_new_by_curve_name(NID_secp256k1)

  EC_KEY_set_conv_form(eckey, POINT_CONVERSION_COMPRESSED) if is_compressed

  group = EC_KEY_get0_group(eckey)
  order = BN_new()
  EC_GROUP_get_order(group, order, nil)
  x = BN_dup(order)
  BN_mul_word(x, i)
  BN_add(x, x, r)

  field = BN_new()
  EC_GROUP_get_curve_GFp(group, field, nil, nil, nil)

  if BN_cmp(x, field) >= 0
    [r, s, order, x, field].each { |item| BN_free(item) }
    EC_KEY_free(eckey)
    return nil
  end

  big_r = EC_POINT_new(group)
  EC_POINT_set_compressed_coordinates_GFp(group, big_r, x, rec_id % 2, nil)

  big_q = EC_POINT_new(group)
  n = EC_GROUP_get_degree(group)
  e = BN_bin2bn(message_hash, message_hash.bytesize, BN_new())
  BN_rshift(e, e, 8 - (n & 7)) if 8 * message_hash.bytesize > n

  ctx = BN_CTX_new()
  zero = BN_new()
  rr = BN_new()
  sor = BN_new()
  eor = BN_new()
  BN_set_word(zero, 0)
  BN_mod_sub(e, zero, e, order, ctx)
  BN_mod_inverse(rr, r, order, ctx)
  BN_mod_mul(sor, s, rr, order, ctx)
  BN_mod_mul(eor, e, rr, order, ctx)
  EC_POINT_mul(group, big_q, eor, big_r, sor, ctx)
  EC_KEY_set_public_key(eckey, big_q)
  BN_CTX_free(ctx)

  [r, s, order, x, field, e, zero, rr, sor, eor].each { |item| BN_free(item) }
  [big_r, big_q].each { |item| EC_POINT_free(item) }

  length = i2o_ECPublicKey(eckey, nil)
  buf = FFI::MemoryPointer.new(:uint8, length)
  ptr = FFI::MemoryPointer.new(:pointer).put_pointer(0, buf)
  pub_hex = buf.read_string(length).unpack('H*')[0] if i2o_ECPublicKey(eckey, ptr) == length

  EC_KEY_free(eckey)

  pub_hex
end

.regenerate_key(private_key) ⇒ Object

resolve public from private key, using ffi and libssl.so example:

keypair = Bitcoin.generate_key; Bitcoin::OpenSSL_EC.regenerate_key(keypair.first) == keypair


127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# File 'lib/bitcoin/ffi/openssl.rb', line 127

def self.regenerate_key(private_key)
  private_key = [private_key].pack('H*') if private_key.bytesize >= (32 * 2)
  private_key_hex = private_key.unpack('H*')[0]

  group = OpenSSL::PKey::EC::Group.new('secp256k1')
  key = OpenSSL::PKey::EC.new(group)
  key.private_key = OpenSSL::BN.new(private_key_hex, 16)
  key.public_key = group.generator.mul(key.private_key)

  priv_hex = key.private_key.to_bn.to_s(16).downcase.rjust(64, '0')
  if priv_hex != private_key_hex
    raise 'regenerated wrong private_key, raise here before generating a faulty public_key too!'
  end

  [priv_hex, key.public_key.to_bn.to_s(16).downcase]
end

.repack_der_signature(signature) ⇒ Object

repack signature for OpenSSL 1.0.1k handling of DER signatures github.com/bitcoin/bitcoin/pull/5634/files



367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
# File 'lib/bitcoin/ffi/openssl.rb', line 367

def self.repack_der_signature(signature)
  init_ffi_ssl

  return false if signature.empty?

  # New versions of OpenSSL will reject non-canonical DER signatures. de/re-serialize first.
  norm_der = FFI::MemoryPointer.new(:pointer)
  sig_ptr  = FFI::MemoryPointer.new(:pointer).put_pointer(
    0, FFI::MemoryPointer.from_string(signature)
  )

  norm_sig = d2i_ECDSA_SIG(nil, sig_ptr, signature.bytesize)

  derlen = i2d_ECDSA_SIG(norm_sig, norm_der)
  ECDSA_SIG_free(norm_sig)
  return false if derlen <= 0

  ret = norm_der.read_pointer.read_string(derlen)
  OPENSSL_free(norm_der.read_pointer)

  ret
end

.sign_compact(hash, private_key, public_key_hex = nil, pubkey_compressed = nil) ⇒ Object



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# File 'lib/bitcoin/ffi/openssl.rb', line 275

def self.sign_compact(hash, private_key, public_key_hex = nil, pubkey_compressed = nil)
  msg32 = FFI::MemoryPointer.new(:uchar, 32).put_bytes(0, hash)

  private_key = [private_key].pack('H*') if private_key.bytesize >= 64
  private_key_hex = private_key.unpack('H*')[0]

  public_key_hex ||= regenerate_key(private_key_hex).last
  pubkey_compressed ||= public_key_hex[0..1] != '04'

  init_ffi_ssl
  eckey = EC_KEY_new_by_curve_name(NID_secp256k1)
  priv_key = BN_bin2bn(private_key, private_key.bytesize, BN_new())

  group = EC_KEY_get0_group(eckey)
  order = BN_new()
  ctx = BN_CTX_new()
  EC_GROUP_get_order(group, order, ctx)

  pub_key = EC_POINT_new(group)
  EC_POINT_mul(group, pub_key, priv_key, nil, nil, ctx)
  EC_KEY_set_private_key(eckey, priv_key)
  EC_KEY_set_public_key(eckey, pub_key)

  signature = ECDSA_do_sign(msg32, msg32.size, eckey)

  BN_free(order)
  BN_CTX_free(ctx)
  EC_POINT_free(pub_key)
  BN_free(priv_key)
  EC_KEY_free(eckey)

  buf = FFI::MemoryPointer.new(:uint8, 32)
  head = nil
  r, s = signature.get_array_of_pointer(0, 2).map do |i|
    BN_bn2bin(i, buf)
    buf.read_string(BN_num_bytes(i)).rjust(32, "\x00")
  end

  rec_id = nil
  if signature.get_array_of_pointer(0, 2).all? { |i| BN_num_bits(i) <= 256 }
    4.times do |i|
      head = [27 + i + (pubkey_compressed ? 4 : 0)].pack('C')
      recovered_key = recover_public_key_from_signature(
        msg32.read_string(32), [head, r, s].join, i, pubkey_compressed
      )
      if public_key_hex == recovered_key
        rec_id = i
        break
      end
    end
  end

  ECDSA_SIG_free(signature)

  [head, [r, s]].join if rec_id
end

.signature_to_low_s(signature) ⇒ Object

Regenerate a DER-encoded signature such that the S-value complies with the BIP62 specification.



233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# File 'lib/bitcoin/ffi/openssl.rb', line 233

def self.signature_to_low_s(signature)
  init_ffi_ssl

  buf = FFI::MemoryPointer.new(:uint8, 34)
  temp = signature.unpack('C*')
  length_r = temp[3]
  length_s = temp[5 + length_r]
  sig = FFI::MemoryPointer.from_string(signature)

  # Calculate the lower s value
  s = BN_bin2bn(sig[6 + length_r], length_s, BN_new())
  eckey = EC_KEY_new_by_curve_name(NID_secp256k1)
  group = EC_KEY_get0_group(eckey)
  order = BN_new()
  halforder = BN_new()
  ctx = BN_CTX_new()

  EC_GROUP_get_order(group, order, ctx)
  BN_rshift1(halforder, order)
  BN_sub(s, order, s) if BN_cmp(s, halforder) > 0

  BN_free(halforder)
  BN_free(order)
  BN_CTX_free(ctx)

  length_s = BN_bn2bin(s, buf)
  # p buf.read_string(length_s).unpack("H*")

  # Re-encode the signature in DER format
  sig = [0x30, 0, 0x02, length_r]
  sig.concat(temp.slice(4, length_r))
  sig << 0x02
  sig << length_s
  sig.concat(buf.read_string(length_s).unpack('C*'))
  sig[1] = sig.size - 2

  BN_free(s)
  EC_KEY_free(eckey)

  sig.pack('C*')
end

.versionInteger

Returns the version of SSL present.

Returns:

  • (Integer)

    version number as an integer.



58
59
60
61
62
63
64
# File 'lib/bitcoin/ffi/openssl.rb', line 58

def self.version
  if self.respond_to?(:OpenSSL_version_num)
    OpenSSL_version_num()
  else
    SSLeay()
  end
end