Class: Dobjects::Function

Inherits:
Object
  • Object
show all
Defined in:
ext/Dobjects/Function/function.c,
lib/Dobjects/Function_extras.rb,
ext/Dobjects/Function/function.c

Overview

Function is a class that embeds two Dvectors, one for X data and one for Y data. It provides

  • facilities for sorting the X while keeping the Y matching, with #sort and Function.joint_sort;

  • to check if X data is sorted: #sorted?, #is_sorted;

  • interpolation, with #compute_spline, #compute_spline_data and #interpolate

  • some functions for data access : #x, #y, #point;

  • some utiliy functions: #split_monotonic, #strip_nan, #reverse!

  • data inspection: #min, #max;

  • some computational functions: #integrate, #primitive, #derivative, and now 4th-order accurate first and second derivatives: #diff_5p and #diff2_5p

  • utility for fuzzy operations, when the X values of two functions differ, but only slightly, of when points are missing: #fuzzy_sub!

  • linear regression #reglin

  • a function to approximate data using a low-order spline: #spline_approximation

And getting bigger (almost) everyday…

Class Method Summary collapse

Instance Method Summary collapse

Constructor Details

#new(x, y) ⇒ Object

Creates a Function object with given x and y values.



156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# File 'ext/Dobjects/Function/function.c', line 156

static VALUE function_initialize(VALUE self, VALUE x, VALUE y)
{
  if(IS_A_DVECTOR(x) && IS_A_DVECTOR(y)) 
    {
      if(DVECTOR_SIZE(x) == DVECTOR_SIZE(y)) {
	set_x_vector(self, x);
	set_y_vector(self, y);
	/* fine, this could have been written in pure Ruby...*/
	set_spline_vector(self,Qnil);
	/* We initialize the @spline_cache var */
      }
      else
	rb_raise(rb_eArgError,"both vectors must have the same size");
    }
  else 
    rb_raise(rb_eArgError,"both arguments must be Dvector");
  return self;
}

Class Method Details

.joint_sort(x, y) ⇒ Object

Sorts x, while ensuring that the corresponding y values

keep matching. Should be pretty fast, as it is derived from
glibc's quicksort.

 a = Dvector[3,2,1]
 b = a * 2                 -> [6,4,2]
 Function.joint_sort(a,b)  -> [[1,2,3], [2,4,6]]


500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
# File 'ext/Dobjects/Function/function.c', line 500

static VALUE function_joint_sort(VALUE self, VALUE x, VALUE y)
{
  long x_len, y_len;
  double * x_values = Dvector_Data_for_Write(x, &x_len);
  double * y_values = Dvector_Data_for_Write(y, &y_len);
  if(x_len != y_len)
    rb_raise(rb_eArgError,"both vectors must have the same size");
  else 
    {
      /* we temporarily freeze both Dvectors before sorting */
      FL_SET(x, DVEC_TMPLOCK);
      FL_SET(y, DVEC_TMPLOCK);
      joint_quicksort(x_values, y_values, (size_t) x_len);
      /* and unfreeze them */
      FL_UNSET(x, DVEC_TMPLOCK);
      FL_UNSET(y, DVEC_TMPLOCK);
    }
  /* we return the array of both Dvectors */
  return rb_ary_new3(2,x,y); 
}

Instance Method Details

#[](index) ⇒ Object

Returns a Dvector with two elements: the X and Y values of the point at the given index.



781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
# File 'ext/Dobjects/Function/function.c', line 781

static VALUE function_point(VALUE self, VALUE index)
{
  if(! NUMERIC(index))
    rb_raise(rb_eArgError, "index has to be numeric");
  else
    {
      long i = NUM2LONG(index);
      long size = function_sanity_check(self);
      if(size > 0 && i < size)
	{
	  VALUE point = rb_funcall(cDvector, idNew, 1, INT2NUM(2));
	  double * dat = Dvector_Data_for_Write(point, NULL);
	  double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
	  double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
	  dat[0] = x[i];
	  dat[1] = y[i];
	  return point;
	}
      else
	return Qnil;
    }
  return Qnil;
}

#bound_values(xmin, xmax, ymin, ymax) ⇒ Object

This function browses the points inside the Function and stores in

the resulting new function only points which are within boundaries,
and the points just next to them (so the general direction on the sides
looks fine).

Make sure _xmin_ < _xmax_ and _ymin_ < _ymax_, else you simply won't
get any output.


1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
# File 'ext/Dobjects/Function/function.c', line 1175

static VALUE function_bound_values(VALUE self, 
				   VALUE vxmin, VALUE vxmax,
				   VALUE vymin, VALUE vymax)
{
  long ss = function_sanity_check(self);
  const double *xs = Dvector_Data_for_Read(get_x_vector(self),NULL);
  const double *ys = Dvector_Data_for_Read(get_y_vector(self),NULL);
  double xmin = NUM2DBL(vxmin);
  double xmax = NUM2DBL(vxmax);
  double ymin = NUM2DBL(vymin);
  double ymax = NUM2DBL(vymax);

  /* Now, two dvectors for writing: */
  VALUE x_out = rb_funcall(cDvector, idNew, 0);
  VALUE y_out = rb_funcall(cDvector, idNew, 0);

  /* No forward computation of the size of the targets, meaning
     memory allocation penalty.
  */
  
  int last_point_in = 0; 	/* Whether the last point was in */
  long i;
  for(i = 0; i < ss; i++) {
    double x = xs[i];
    double y = ys[i];
    if( (xmin <= x) && (xmax >= x) && (ymin <= y) && (ymax >= y)) {
      if(! last_point_in) {
	last_point_in = 1;
	if(i) {			/* Not for the first element */
	  Dvector_Push_Double(x_out, xs[i-1]);
	  Dvector_Push_Double(y_out, ys[i-1]);
	}
      }
      Dvector_Push_Double(x_out, x);
      Dvector_Push_Double(y_out, y);
    }
    else {			/* Outside boundaries */
      if(last_point_in) {
	last_point_in = 0;
	Dvector_Push_Double(x_out, x);
	Dvector_Push_Double(y_out, y);
      }
    }
  }
  return Function_Create(x_out, y_out);
}

#boundsObject

Returns [xmin, ymin, xmax, ymax]



27
28
29
30
31
# File 'lib/Dobjects/Function_extras.rb', line 27

def bounds
  xmin,xmax = x.bounds
  ymin,ymax = y.bounds
  return [xmin, ymin, xmax, ymax]
end

#compute_spline(x_values) ⇒ Object

Interpolates the value of the function at the points given.

Returns a brand new Dvector. The X values must be sorted !


391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
# File 'ext/Dobjects/Function/function.c', line 391

static VALUE function_compute_spline(VALUE self, VALUE x_values)
{
  VALUE x_vec = get_x_vector(self);
  VALUE y_vec = get_y_vector(self);
  VALUE cache;
  VALUE ret_val;
  long dat_size = function_sanity_check(self);
  long size = DVECTOR_SIZE(x_values);
  
  function_ensure_spline_data_present(self);

  cache = get_spline_vector(self);

  ret_val = rb_funcall(cDvector, rb_intern("new"),
		       1, LONG2NUM(size));
  double * x_dat = Dvector_Data_for_Read(x_vec,NULL);
  double * y_dat = Dvector_Data_for_Read(y_vec,NULL);
  double * spline = Dvector_Data_for_Read(cache,NULL);
  double * x = Dvector_Data_for_Read(x_values,NULL);
  double * y = Dvector_Data_for_Write(ret_val,NULL);
  
  function_compute_spline_interpolation(dat_size, x_dat,
					y_dat, spline,
					size, x, y);
  return ret_val;
}

#compute_spline_dataObject

Computes spline data and caches it inside the object. Both X and Y vectors are cleared (see Dvector#clear) to make sure the cache is kept up-to-date. If the function is not sorted, sorts it.



282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
# File 'ext/Dobjects/Function/function.c', line 282

static VALUE function_compute_spline_data(VALUE self)
{
  VALUE x_vec = get_x_vector(self);
  VALUE y_vec = get_y_vector(self);
  VALUE cache = get_spline_vector(self);
  long size = DVECTOR_SIZE(x_vec);

  if(DVECTOR_SIZE(y_vec) != size)
    rb_raise(rb_eRuntimeError, 
	     "x and y should have the same size !");
  if(! IS_A_DVECTOR(cache))    /* create it -- and silently ignores
				  its previous values */
      cache = rb_funcall(cDvector, idNew,
			 1, LONG2NUM(size));
  if(DVECTOR_SIZE(cache) != size) /* switch to the required size for cache */
    Dvector_Data_Resize(cache, size);

  /* we make sure that the X values are sorted */
  if(! RTEST(function_is_sorted(self)))
     function_sort(self);
  
  double * x, *y, *spline;
  x = Dvector_Data_for_Read(x_vec, NULL);
  y = Dvector_Data_for_Read(y_vec, NULL);
  spline = Dvector_Data_for_Write(cache, NULL);

  function_fill_second_derivatives(size, x, y, spline,1.0/0.0, 1.0/0.0);
  set_spline_vector(self, cache);

  /* now, we clear both X and Y */
  DVECTOR_CLEAR(x_vec);
  DVECTOR_CLEAR(y_vec);
  return self;
}

#derivativeObject

Computes the derivative of the Function and returns it as a new Function. The newly created function shares the X vector with the previous one.

WARNING: this is a very naive 3-points algorithm; you should consider using diff_5p



964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
# File 'ext/Dobjects/Function/function.c', line 964

static VALUE function_derivative(VALUE self)
{
  long size = function_sanity_check(self);
  const double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
  const double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
  VALUE derivative = Dvector_Create();
  long i = 0;
  /* First value */
  Dvector_Push_Double(derivative, (y[i+1] - y[i]) /(x[i+1] - x[i]));
  i++;
  while(i < (size - 1))
    {
      Dvector_Push_Double(derivative, 
			  .5 * (
				(y[i+1] - y[i]) /(x[i+1] - x[i]) + 
				(y[i] - y[i-1]) /(x[i] - x[i-1])
				));
      i++;
    }
  Dvector_Push_Double(derivative, (y[i] - y[i-1]) /(x[i] - x[i-1]));
  return Function_Create(get_x_vector(self), derivative);
}

#diff2_5pObject

Computes a 4th order accurate second derivative of the Function.

This function requires that there are at the very least 5 data points!



1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
# File 'ext/Dobjects/Function/function.c', line 1060

static VALUE function_diff2_5p(VALUE self)
{
  long size = function_sanity_check(self);
  const double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
  const double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
  VALUE derivative = Dvector_Create();
  long i = 0;
  double delta_1, delta_2, delta_3, delta_4;
  double alpha_1, alpha_2, alpha_3, alpha_4;
  double v0,v1,v2,v3,v4;

  for(i = 0; i < size; i++) {
    /* First initialize values, though this is very suboptimal */
    v0 = y[i];
    if(i == 0) {
      delta_1 = x[1] - x[0]; v1 = y[1];
      delta_2 = x[2] - x[0]; v2 = y[2];
      delta_3 = x[3] - x[0]; v3 = y[3];
      delta_4 = x[4] - x[0]; v4 = y[4];
    } else if(i == 1) {
      delta_1 = x[0] - x[1]; v1 = y[0];
      delta_2 = x[2] - x[1]; v2 = y[2];
      delta_3 = x[3] - x[1]; v3 = y[3];
      delta_4 = x[4] - x[1]; v4 = y[4];
    } else if(i == size - 2) {
      delta_1 = x[size-1] - x[size-2]; v1 = y[size-1];
      delta_2 = x[size-3] - x[size-2]; v2 = y[size-3];
      delta_3 = x[size-4] - x[size-2]; v3 = y[size-4];
      delta_4 = x[size-5] - x[size-2]; v4 = y[size-5];
    } else if(i == size - 1) {
      delta_1 = x[size-2] - x[size-1]; v1 = y[size-2];
      delta_2 = x[size-3] - x[size-1]; v2 = y[size-3];
      delta_3 = x[size-4] - x[size-1]; v3 = y[size-4];
      delta_4 = x[size-5] - x[size-1]; v4 = y[size-5];
    } else {
      delta_1 = x[i-2] - x[i]; v1 = y[i-2];
      delta_2 = x[i-1] - x[i]; v2 = y[i-1];
      delta_3 = x[i+2] - x[i]; v3 = y[i+2];
      delta_4 = x[i+1] - x[i]; v4 = y[i+1];
    }
    alpha_1 = -2 * (delta_2*delta_3 + delta_2*delta_4 + delta_3*delta_4)/
      (delta_1 * (delta_2 - delta_1) * (delta_3 - delta_1) 
       * (delta_4 - delta_1));
    alpha_2 = -2 * (delta_1*delta_3 + delta_1*delta_4 + delta_3*delta_4)/
      (delta_2 * (delta_1 - delta_2) * (delta_3 - delta_2) 
       * (delta_4 - delta_2));
    alpha_3 = -2 * (delta_2*delta_1 + delta_2*delta_4 + delta_1*delta_4)/
      (delta_3 * (delta_1 - delta_3) * (delta_2 - delta_3) 
       * (delta_4 - delta_3));
    alpha_4 = -2 * (delta_2*delta_3 + delta_2*delta_1 + delta_3*delta_1)/
      (delta_4 * (delta_1 - delta_4) * (delta_2 - delta_4) 
       * (delta_3 - delta_4));
    Dvector_Push_Double(derivative,
			-(alpha_1 + alpha_2 + alpha_3 + alpha_4) * v0 +
			alpha_1 * v1 + alpha_2 * v2 + 
			alpha_3 * v3 + alpha_4 * v4);
  }
  return Function_Create(get_x_vector(self), derivative);
}

#diff_5pObject

Computes a 4th order accurate derivative of the Function.

This function requires that there are at the very least 5 data points !



993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
# File 'ext/Dobjects/Function/function.c', line 993

static VALUE function_diff_5p(VALUE self)
{
  long size = function_sanity_check(self);
  const double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
  const double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
  VALUE derivative = Dvector_Create();
  long i = 0;
  double delta_1, delta_2, delta_3, delta_4;
  double alpha_1, alpha_2, alpha_3, alpha_4;
  double v0,v1,v2,v3,v4;
  /* TODO: what happens when there are less than 5 points ? */

  for(i = 0; i < size; i++) {
    /* First initialize values, though this is very suboptimal */
    v0 = y[i];
    if(i == 0) {
      delta_1 = x[1] - x[0]; v1 = y[1];
      delta_2 = x[2] - x[0]; v2 = y[2];
      delta_3 = x[3] - x[0]; v3 = y[3];
      delta_4 = x[4] - x[0]; v4 = y[4];
    } else if(i == 1) {
      delta_1 = x[0] - x[1]; v1 = y[0];
      delta_2 = x[2] - x[1]; v2 = y[2];
      delta_3 = x[3] - x[1]; v3 = y[3];
      delta_4 = x[4] - x[1]; v4 = y[4];
    } else if(i == size - 2) {
      delta_1 = x[size-1] - x[size-2]; v1 = y[size-1];
      delta_2 = x[size-3] - x[size-2]; v2 = y[size-3];
      delta_3 = x[size-4] - x[size-2]; v3 = y[size-4];
      delta_4 = x[size-5] - x[size-2]; v4 = y[size-5];
    } else if(i == size - 1) {
      delta_1 = x[size-2] - x[size-1]; v1 = y[size-2];
      delta_2 = x[size-3] - x[size-1]; v2 = y[size-3];
      delta_3 = x[size-4] - x[size-1]; v3 = y[size-4];
      delta_4 = x[size-5] - x[size-1]; v4 = y[size-5];
    } else {
      delta_1 = x[i-2] - x[i]; v1 = y[i-2];
      delta_2 = x[i-1] - x[i]; v2 = y[i-1];
      delta_3 = x[i+2] - x[i]; v3 = y[i+2];
      delta_4 = x[i+1] - x[i]; v4 = y[i+1];
    }
    alpha_1 = delta_2*delta_3*delta_4/
      (delta_1 * (delta_2 - delta_1) * (delta_3 - delta_1) 
       * (delta_4 - delta_1));
    alpha_2 = delta_1*delta_3*delta_4/
      (delta_2 * (delta_1 - delta_2) * (delta_3 - delta_2) 
       * (delta_4 - delta_2));
    alpha_3 = delta_1*delta_2*delta_4/
      (delta_3 * (delta_1 - delta_3) * (delta_2 - delta_3) 
       * (delta_4 - delta_3));
    alpha_4 = delta_1*delta_2*delta_3/
      (delta_4 * (delta_1 - delta_4) * (delta_2 - delta_4) 
       * (delta_3 - delta_4));
    Dvector_Push_Double(derivative,
			-(alpha_1 + alpha_2 + alpha_3 + alpha_4) * v0 +
			alpha_1 * v1 + alpha_2 * v2 + 
			alpha_3 * v3 + alpha_4 * v4);
  }
  return Function_Create(get_x_vector(self), derivative);
}

#distance(x, y) ⇒ Numeric #distance(x, y, xscale, yscale) ⇒ Numeric

Returns the distance of the function to the given point. Optionnal xscale and yscale says by how much we should divide the x and y coordinates before computing the distance. Use it if the distance is not homogeneous.

Overloads:



861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
# File 'ext/Dobjects/Function/function.c', line 861

static VALUE function_distance(int argc, VALUE *argv, VALUE self)
{
  switch(argc)
    {
    case 2:
      return rb_float_new(private_function_distance(self, 
						    NUM2DBL(argv[0]),
						    NUM2DBL(argv[1]),
						    1.0,1.0,NULL));
    case 4:
      return rb_float_new(private_function_distance(self, 
						    NUM2DBL(argv[0]),
						    NUM2DBL(argv[1]),
						    NUM2DBL(argv[2]),
						    NUM2DBL(argv[3]),
						    NULL));
    default:
      rb_raise(rb_eArgError, "distance should have 2 or 4 parameters");
    }
  return Qnil;
}

#eachObject

:yields: x,y



528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
# File 'ext/Dobjects/Function/function.c', line 528

static VALUE function_each(VALUE self) /* :yields: x,y */
{

  long x_len, y_len;
  VALUE x = get_x_vector(self);
  VALUE y = get_y_vector(self);
  double * x_values = Dvector_Data_for_Write(x, &x_len);
  double * y_values = Dvector_Data_for_Write(y, &y_len);
  if(x_len != y_len)
    rb_raise(rb_eRuntimeError,"X and Y must have the same size");
  else 
    {
      /* we temporarily freeze both Dvectors during iteration */
      FL_SET(x, DVEC_TMPLOCK);
      FL_SET(y, DVEC_TMPLOCK);
      while(x_len--)
	{
	  VALUE flt_x = rb_float_new(*x_values++);
	  VALUE flt_y = rb_float_new(*y_values++);
	  rb_yield_values(2, flt_x, flt_y);
	}
      /* and unfreeze them */
      FL_UNSET(x, DVEC_TMPLOCK);
      FL_UNSET(y, DVEC_TMPLOCK);
    }
  return self; /* nothing interesting */
  
}

#fuzzy_sub!(op) ⇒ Object

Fuzzy substraction of two curves. Substracts the Y values of op to the current Function, by making sure that the Y value substracted to a given point corresponds to the closest X_ value of the point in op. This function somehow assumes that the data is reasonably organised, and will never go backwards to find a matching X value in op.

In any case, you really should consider using split_monotonic on it first.



1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
# File 'ext/Dobjects/Function/function.c', line 1139

static VALUE function_fuzzy_substract(VALUE self, VALUE op)
{
  long ss = function_sanity_check(self);
  const double *xs = Dvector_Data_for_Read(get_x_vector(self),NULL);
  double *ys = Dvector_Data_for_Write(get_y_vector(self),NULL);
  long so = function_sanity_check(op);
  const double *xo = Dvector_Data_for_Read(get_x_vector(op),NULL);
  const double *yo = Dvector_Data_for_Read(get_y_vector(op),NULL);
  long i,j = 0;
  double diff;
  double fuzz = 0; 		/* The actual sum of the terms */
  
  for(i = 0; i < ss; i++) 
    {
      /* We first look for the closest point */
      diff = fabs(xs[i] - xo[j]);
      while((j < (so - 1)) && (fabs(xs[i] - xo[j+1]) <  diff))
	diff = fabs(xs[i] - xo[++j]);
      fuzz += diff;
      ys[i] -= yo[j];
    }
  return rb_float_new(fuzz);
}

#integrate(*args) ⇒ Object

:call-seq:

f.integrate()  -> value
f.integrate(start_index, end_index) -> value

Returns the value of the integral of the function between the two indexes given, or over the whole function if no indexes are specified.



915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
# File 'ext/Dobjects/Function/function.c', line 915

static VALUE function_integrate(int argc, VALUE *argv, VALUE self)
{
  long start,end;
  switch(argc) 
    {
    case 0:
      start = 0;
      end = function_sanity_check(self) - 1; 
      break;
    case 2:
      start = NUM2LONG(argv[0]);
      end = NUM2LONG(argv[1]);
      break;
    default:
      rb_raise(rb_eArgError, "integrate should have 0 or 2 parameters");
    }
  return rb_float_new(private_function_integrate(self,start,end));
}

#interpolate(x_values) ⇒ Object #interpolate(a_number) ⇒ Object

Computes interpolated values of the data contained in f and returns a Function object holding both x_values and the computed Y values. x_values will be sorted if necessary.

With the second form, specify only the number of points, and the function will construct the appropriate vector with equally spaced points within the function range.



582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
# File 'ext/Dobjects/Function/function.c', line 582

static VALUE function_interpolate(VALUE self, VALUE x_values)
{
  if(NUMERIC(x_values))
    {
      /* we're in the second case, although I sincerely doubt it would
	 come useful 
      */
      long size,i;
      /* we make sure the function is sorted */
      function_ensure_sorted(self);
      double * data;
      double x_min;
      double x_max;
      data = Dvector_Data_for_Read(get_x_vector(self), &size);
      x_min = *data;
      x_max = *(data + size -1);
      x_values = rb_funcall(cDvector, idNew, 1, x_values);
      data = Dvector_Data_for_Write(x_values, &size);
      for(i = 0;i < size; i++)
	data[i] = x_min + ((x_max - x_min)/((double) (size-1))) * i;
    }
  if(! IS_A_DVECTOR(x_values))
    rb_raise(rb_eArgError, "x_values should be a Dvector or a number");
  else 
    {
      /* sort x_values */
      if(! dvector_is_sorted(x_values))
	rb_funcall(x_values, idSort,0);
      VALUE y_values = function_compute_spline(self, x_values);
      return rb_funcall(cFunction, idNew, 2, x_values, y_values);
    }
  return Qnil;
}

#make_interpolantObject

Returns an interpolant that can be fed to Special_Paths#append_interpolant_to_path to make nice splines.

Can be used this way:

f = Function.new(x,y)
t.append_interpolant_to_path(f.make_interpolant)
t.stroke


429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
# File 'ext/Dobjects/Function/function.c', line 429

static VALUE function_make_interpolant(VALUE self)
{
  VALUE x_vec = get_x_vector(self);
  VALUE y_vec = get_y_vector(self);
  VALUE cache;
  VALUE a_vec,b_vec,c_vec;
  VALUE ret_val;
  double *x, *y, *a, *b, *c, *y2;
  double delta_x;
  long size = function_sanity_check(self);
  long i;
  
  function_ensure_spline_data_present(self);

  cache = get_spline_vector(self);
  x = Dvector_Data_for_Read(x_vec,NULL);
  y = Dvector_Data_for_Read(y_vec,NULL);
  y2 = Dvector_Data_for_Read(cache,NULL);

  a_vec  = rb_funcall(cDvector, idNew, 1, LONG2NUM(size));
  a = Dvector_Data_for_Write(a_vec, NULL);
  b_vec  = rb_funcall(cDvector, idNew, 1, LONG2NUM(size));
  b = Dvector_Data_for_Write(b_vec, NULL);
  c_vec  = rb_funcall(cDvector, idNew, 1, LONG2NUM(size));
  c = Dvector_Data_for_Write(c_vec, NULL);

  /* from my computations, the formula is the following:
     A = (y_2n+1 - y_2n)/(6 * delta_x)
     B = 0.5 * y_2n
     C = (y_n+1 - y_n)/delta_x - (2 * y_2n + y_2n+1) * delta_x/6
  */

  for(i = 0; i < size - 1; i++)
    {
      delta_x = x[i+1] - x[i];
      a[i] = (y2[i+1] - y2[i]) / (6.0 * delta_x);
      b[i] = 0.5 * y2[i];
      c[i] = (y[i+1] - y[i])/delta_x - 
	(2 * y2[i] + y2[i+1]) * (delta_x / 6.0);
    }
  a[i] = b[i] = c[i] = 0.0;
  ret_val = rb_ary_new();
  rb_ary_push(ret_val, x_vec);
  rb_ary_push(ret_val, y_vec);
  rb_ary_push(ret_val, a_vec);
  rb_ary_push(ret_val, b_vec);
  rb_ary_push(ret_val, c_vec);

  return ret_val;
}

#maxObject

Returns the point where Y is the maximum



39
40
41
# File 'lib/Dobjects/Function_extras.rb', line 39

def max
  return point(y.where_max)
end

#minObject

Returns the point where Y is the minimum



34
35
36
# File 'lib/Dobjects/Function_extras.rb', line 34

def min
  return point(y.where_min)
end

#point(index) ⇒ Object

Returns a Dvector with two elements: the X and Y values of the point at the given index.



781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
# File 'ext/Dobjects/Function/function.c', line 781

static VALUE function_point(VALUE self, VALUE index)
{
  if(! NUMERIC(index))
    rb_raise(rb_eArgError, "index has to be numeric");
  else
    {
      long i = NUM2LONG(index);
      long size = function_sanity_check(self);
      if(size > 0 && i < size)
	{
	  VALUE point = rb_funcall(cDvector, idNew, 1, INT2NUM(2));
	  double * dat = Dvector_Data_for_Write(point, NULL);
	  double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
	  double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
	  dat[0] = x[i];
	  dat[1] = y[i];
	  return point;
	}
      else
	return Qnil;
    }
  return Qnil;
}

#primitiveObject

Computes the primitive of the Function (whose value for the first point is 0) and returns it as a new Function. The newly created function shares the X vector with the previous one.



939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
# File 'ext/Dobjects/Function/function.c', line 939

static VALUE function_primitive(VALUE self)
{
  long size = function_sanity_check(self);
  const double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
  const double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
  VALUE primitive = Dvector_Create();
  long i = 0;
  double val = 0;
  while(i < (size - 1))
    {
      Dvector_Push_Double(primitive, val);
      val += (y[i] + y[i+1]) * (x[i+1] - x[i]) * 0.5;
      i++;
    }
  Dvector_Push_Double(primitive, val);
  return Function_Create(get_x_vector(self), primitive);
}

#reglin(*args) ⇒ Object

Performs a linear regression of the Function; returns the pair

[ a, b]

where f(x) = a*x + b

if the optional arguments first and last are provided, they represent the indices of the first and last elements.



1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
# File 'ext/Dobjects/Function/function.c', line 1282

static VALUE function_reglin(int argc, VALUE *argv, VALUE self)
{
  long len = function_sanity_check(self);
  const double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
  const double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
  VALUE ret = rb_funcall(cDvector, idNew, 1, INT2NUM(2));
  double * dat = Dvector_Data_for_Write(ret, NULL);
  long nb;
  if(argc == 2) {
    long f = NUM2LONG(argv[0]);
    long l = NUM2LONG(argv[1]);
    if(f < 0)
      f = len + f;
    if(l < 0)
      l = len + l;
    x += f;
    y += f;
    nb = l - f;
  }
  else if(argc == 0) {
    nb = len;
  }
  else {
    rb_raise(rb_eArgError, "reglin should have 0 or 2 parameters");
  }
  reglin(x,y,nb,dat,dat+1);
  return ret;
}

#reverse!Object

Reverses the function. Equivalent to doing

 x.reverse!
 y.reverse!

excepted that it is faster (though not *much* faster).


1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
# File 'ext/Dobjects/Function/function.c', line 1229

static VALUE function_reverse(VALUE self)
{
  long len = function_sanity_check(self);
  double *xs = Dvector_Data_for_Write(get_x_vector(self),NULL);
  double *ys = Dvector_Data_for_Write(get_y_vector(self),NULL);
  
  double *xe = xs+len-1;
  double *ye = ys+len-1;
  double tmp;
  long i;
  for(i = 0; i < len/2; i++, xs++, ys++, xe--, ye--) {
    tmp = *xe; *xe = *xs; *xs = tmp;
    tmp = *ye; *ye = *ys; *ys = tmp;
  }
  return self;
}

#sizeObject Also known as: length

Returns the number of points inside the function.



1123
1124
1125
1126
1127
# File 'ext/Dobjects/Function/function.c', line 1123

static VALUE function_size(VALUE self)
{
  long size = function_sanity_check(self);
  return LONG2NUM(size);
}

#smooth_pick(*args) ⇒ Object

Attempts to pick a smooth value for a point, according to the algorithm implented for “smooth” markers in Soas. See DOI: 10.1016/j.bioelechem.2009.02.010

Warning: be wary of this function as it will return a correct value only for rather noisy data !



1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
# File 'ext/Dobjects/Function/function.c', line 1381

static VALUE function_smooth_pick(int argc, VALUE *argv, VALUE self)
{
  long len = function_sanity_check(self);
  const double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
  const double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
  long idx;
  long range;
  switch(argc) {
  case 2:
    range = NUM2LONG(argv[1]);
    break;
  case 1:
    range = len > 500 ? 50 : len/10;
    break;
  default:
    rb_raise(rb_eArgError, "smooth_a=t should have 1 or 2 parameters");
  }
  idx = NUM2LONG(argv[0]);
  if(idx < 0)
    idx = len + idx;
  return rb_float_new(smooth_pick(x,y,len,idx,range));
}

#sortObject

Sorts the X values while keeping the matching Y values.



772
773
774
775
# File 'ext/Dobjects/Function/function.c', line 772

static VALUE function_sort(VALUE self)
{
  return function_joint_sort(self,get_x_vector(self), get_y_vector(self));
}

#sorted?Boolean Also known as: is_sorted

Checks if the X values of the Function are sorted.

Returns:

  • (Boolean)


201
202
203
204
205
206
207
# File 'ext/Dobjects/Function/function.c', line 201

static VALUE function_is_sorted(VALUE self)
{
  if(dvector_is_sorted(get_x_vector(self)))
    return Qtrue;
  else
    return Qfalse;
}

#spline_approximation(params) ⇒ Object

Filters the Function through interpolation. params holds a hash with the following values: ??

It returns a hash.



1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
# File 'ext/Dobjects/Function/function.c', line 1598

static VALUE function_spline_approximation(VALUE self, VALUE params)
{
  long len = function_sanity_check(self);
  const double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
  const double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);
  VALUE xiret, yiret, y2iret, yintret,ret;
  double * xi, *yi, *y2i, *yint;
  long nbavg = 9;  
  long nbmax = 20;
  if(RTEST(rb_hash_aref(params, rb_str_new2("number"))))
    nbmax = NUM2LONG(rb_hash_aref(params, rb_str_new2("number")));
  if(RTEST(rb_hash_aref(params, rb_str_new2("average"))))
    nbavg = NUM2LONG(rb_hash_aref(params, rb_str_new2("average")));

  /* TODO: add checks that monotonic and growing. */
  
  xiret = rb_funcall(cDvector, idNew, 1, INT2NUM(nbmax)); 
  xi = Dvector_Data_for_Write(xiret, NULL);
  yiret = rb_funcall(cDvector, idNew, 1, INT2NUM(nbmax)); 
  yi = Dvector_Data_for_Write(yiret, NULL);
  y2iret = rb_funcall(cDvector, idNew, 1, INT2NUM(nbmax)); 
  y2i = Dvector_Data_for_Write(y2iret, NULL);
  yintret = rb_funcall(cDvector, idNew, 1, INT2NUM(len)); 
  yint = Dvector_Data_for_Write(yintret, NULL);

  internal_spline_approximation(x, y, len, xi, yi, y2i,
				nbmax, nbavg, yint);
  ret = rb_hash_new();
  rb_hash_aset(ret, rb_str_new2("xi"), xiret);
  rb_hash_aset(ret, rb_str_new2("yi"), yiret);
  rb_hash_aset(ret, rb_str_new2("y2i"), y2iret);
  rb_hash_aset(ret, rb_str_new2("y"), yintret);
  return ret;
}

#split_monotonicObject

Splits the function into strictly monotonic sub-functions. Returns the array of the subfunctions. The returned values are necessarily new values.



653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
# File 'ext/Dobjects/Function/function.c', line 653

static VALUE function_split_monotonic(VALUE self)
{
  VALUE ret = rb_ary_new();
  VALUE cur_x = Dvector_Create();
  VALUE cur_y = Dvector_Create();

  long size = function_sanity_check(self);
  long i;
  if(size < 2)
    rb_raise(rb_eRuntimeError, "Function needs to have at least 2 points");

  double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
  double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);

  double last_x;
  double direction; /* -1 if down, +1 if up, so that the product of 
		       (x - last_x) with direction should always be positive
		    */
  VALUE f;
		     
		       
  /* bootstrap */
  if(x[1] > x[0])
    direction = 1;
  else
    direction = -1;
  last_x = x[1];
  for(i = 0; i < 2; i++)
    {
      Dvector_Push_Double(cur_x, x[i]);
      Dvector_Push_Double(cur_y, y[i]);
    }

  for(i = 2; i < size; i++) 
    {
      if(direction * (x[i] - last_x) <= 0) 
	{
	  /* we need to add a new set of Dvectors */
	  f = Function_Create(cur_x, cur_y);
	  rb_ary_push(ret, f);
	  cur_x = Dvector_Create();
	  cur_y = Dvector_Create();
	  /* We don't store the previous point if 
	   the X value is the same*/
	  if(x[i] != last_x) 
	    {
	      Dvector_Push_Double(cur_x, x[i-1]);
	      Dvector_Push_Double(cur_y, y[i-1]);
	    }
	  direction *= -1;
	}
      /* store the current point */
      Dvector_Push_Double(cur_x, x[i]);
      Dvector_Push_Double(cur_y, y[i]);
      last_x = x[i];
    }
  f = Function_Create(cur_x, cur_y);
  rb_ary_push(ret, f);
  return ret;
}

#split_on_nan(sym) ⇒ Object

Splits the function on NaN values for x, y or xy, depending on whether sym is :x, :y or :xy (or, as a matter of fact, anything else than :x or :y).

This returns an array of new Function objects.

This function will return empty Function objects between consecutive NaN values.



725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
# File 'ext/Dobjects/Function/function.c', line 725

static VALUE function_split_on_nan(VALUE self, VALUE sym)
{
  VALUE ret = rb_ary_new();
  VALUE cur_x = Dvector_Create();
  VALUE cur_y = Dvector_Create();
  int on_x = 1;
  int on_y = 1;
  long size = function_sanity_check(self);
  long cur_size = 0;
  long i;
  if(size < 2)
    rb_raise(rb_eRuntimeError, "Function needs to have at least 2 points");

  double *x = Dvector_Data_for_Read(get_x_vector(self),NULL);
  double *y = Dvector_Data_for_Read(get_y_vector(self),NULL);

  VALUE f;
  
  if(sym == ID2SYM(rb_intern("x")))
    on_y = 0;
  else if(sym == ID2SYM(rb_intern("y")))
    on_x = 0;


  for(i = 0; i < size; i++) {
    if((on_x && isnan(x[i])) ||
       (on_y && isnan(y[i]))) {
      /* We split */
      f = Function_Create(cur_x, cur_y);
      rb_ary_push(ret, f);
      cur_x = Dvector_Create();
      cur_y = Dvector_Create();
    }
    else {
      Dvector_Push_Double(cur_x, x[i]);
      Dvector_Push_Double(cur_y, y[i]);
    }
  }
  f = Function_Create(cur_x, cur_y);
  rb_ary_push(ret, f);
  return ret;
}

#strip_nanObject

Strips all the points containing NaN values from the function, and returns the number of points stripped.



622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
# File 'ext/Dobjects/Function/function.c', line 622

static VALUE function_strip_nan(VALUE self)
{
  long size = function_sanity_check(self);
  long nb_stripped = 0;
  long i;

  double *x = Dvector_Data_for_Write(get_x_vector(self),NULL);
  double *y = Dvector_Data_for_Write(get_y_vector(self),NULL);
  for( i = 0; i < size; i++)
    {
      if(isnan(x[i]) || isnan(y[i]))
	nb_stripped ++;
      else
	{
	  x[i - nb_stripped] = x[i];
	  y[i - nb_stripped] = y[i];
	}
    }
  if(nb_stripped)
    {
      Dvector_Data_Resize(get_x_vector(self), size - nb_stripped);
      Dvector_Data_Resize(get_y_vector(self), size - nb_stripped);
    }
  return INT2NUM(nb_stripped);
}

#xObject

#yObject