Class: MiniTest::Unit::TestCase

Inherits:
Object
  • Object
show all
Extended by:
Guard
Includes:
Assertions, Guard, LifecycleHooks
Defined in:
lib/minitest/unit.rb,
lib/minitest/benchmark.rb

Overview

Subclass TestCase to create your own tests. Typically you'll want a TestCase subclass per implementation class.

See MiniTest::Assertions

Direct Known Subclasses

Spec

Constant Summary

PASSTHROUGH_EXCEPTIONS =
[NoMemoryError, SignalException,
Interrupt, SystemExit]

Constants included from Assertions

Assertions::UNDEFINED

Instance Attribute Summary collapse

Class Method Summary collapse

Instance Method Summary collapse

Methods included from Guard

jruby?, maglev?, mri?, rubinius?, windows?

Methods included from Assertions

#_assertions, #_assertions=, #assert, #assert_empty, #assert_equal, #assert_in_delta, #assert_in_epsilon, #assert_includes, #assert_instance_of, #assert_kind_of, #assert_match, #assert_nil, #assert_operator, #assert_output, #assert_predicate, #assert_raises, #assert_respond_to, #assert_same, #assert_send, #assert_silent, #assert_throws, #capture_io, #capture_subprocess_io, diff, #diff, diff=, #exception_details, #flunk, #message, #mu_pp, #mu_pp_for_diff, #pass, #refute, #refute_empty, #refute_equal, #refute_in_delta, #refute_in_epsilon, #refute_includes, #refute_instance_of, #refute_kind_of, #refute_match, #refute_nil, #refute_operator, #refute_predicate, #refute_respond_to, #refute_same, #skip, #skipped?, #synchronize

Methods included from LifecycleHooks

#after_setup, #after_teardown, #before_setup, #before_teardown

Constructor Details

#initialize(name) ⇒ TestCase

:nodoc:



1289
1290
1291
1292
1293
1294
# File 'lib/minitest/unit.rb', line 1289

def initialize name # :nodoc:
  @__name__ = name
  @__io__ = nil
  @passed = nil
  @@current = self # FIX: make thread local
end

Instance Attribute Details

#__name__Object (readonly)

:nodoc:



1231
1232
1233
# File 'lib/minitest/unit.rb', line 1231

def __name__
  @__name__
end

Class Method Details

.bench_exp(min, max, base = 10) ⇒ Object

Returns a set of ranges stepped exponentially from min to max by powers of base. Eg:

bench_exp(2, 16, 2) # => [2, 4, 8, 16]


20
21
22
23
24
25
# File 'lib/minitest/benchmark.rb', line 20

def self.bench_exp min, max, base = 10
  min = (Math.log10(min) / Math.log10(base)).to_i
  max = (Math.log10(max) / Math.log10(base)).to_i

  (min..max).map { |m| base ** m }.to_a
end

.bench_linear(min, max, step = 10) ⇒ Object

Returns a set of ranges stepped linearly from min to max by step. Eg:

bench_linear(20, 40, 10) # => [20, 30, 40]


33
34
35
36
37
# File 'lib/minitest/benchmark.rb', line 33

def self.bench_linear min, max, step = 10
  (min..max).step(step).to_a
rescue LocalJumpError # 1.8.6
  r = []; (min..max).step(step) { |n| r << n }; r
end

.bench_rangeObject

Specifies the ranges used for benchmarking for that class. Defaults to exponential growth from 1 to 10k by powers of 10. Override if you need different ranges for your benchmarks.

See also: ::bench_exp and ::bench_linear.



61
62
63
# File 'lib/minitest/benchmark.rb', line 61

def self.bench_range
  bench_exp 1, 10_000
end

.benchmark_methodsObject

Returns the benchmark methods (methods that start with bench_) for that class.



43
44
45
# File 'lib/minitest/benchmark.rb', line 43

def self.benchmark_methods # :nodoc:
  public_instance_methods(true).grep(/^bench_/).map { |m| m.to_s }.sort
end

.benchmark_suitesObject

Returns all test suites that have benchmark methods.



50
51
52
# File 'lib/minitest/benchmark.rb', line 50

def self.benchmark_suites
  TestCase.test_suites.reject { |s| s.benchmark_methods.empty? }
end

.currentObject

:nodoc:



1296
1297
1298
# File 'lib/minitest/unit.rb', line 1296

def self.current # :nodoc:
  @@current # FIX: make thread local
end

.i_suck_and_my_tests_are_order_dependent!Object

Call this at the top of your tests when you absolutely positively need to have ordered tests. In doing so, you're admitting that you suck and your tests are weak.



1326
1327
1328
1329
1330
1331
# File 'lib/minitest/unit.rb', line 1326

def self.i_suck_and_my_tests_are_order_dependent!
  class << self
    undef_method :test_order if method_defined? :test_order
    define_method :test_order do :alpha end
  end
end

.inherited(klass) ⇒ Object

:nodoc:



1361
1362
1363
1364
# File 'lib/minitest/unit.rb', line 1361

def self.inherited klass # :nodoc:
  @@test_suites[klass] = true
  super
end

.make_my_diffs_pretty!Object

Make diffs for this TestCase use #pretty_inspect so that diff in assert_equal can be more details. NOTE: this is much slower than the regular inspect but much more usable for complex objects.



1339
1340
1341
1342
1343
1344
1345
# File 'lib/minitest/unit.rb', line 1339

def self.make_my_diffs_pretty!
  require 'pp'

  define_method :mu_pp do |o|
    o.pretty_inspect
  end
end

.parallelize_me!Object

Call this at the top of your tests when you want to run your tests in parallel. In doing so, you're admitting that you rule and your tests are awesome.



1352
1353
1354
1355
1356
1357
1358
1359
# File 'lib/minitest/unit.rb', line 1352

def self.parallelize_me!
  require "minitest/parallel_each"

  class << self
    undef_method :test_order if method_defined? :test_order
    define_method :test_order do :parallel end
  end
end

.resetObject

:nodoc:



1315
1316
1317
# File 'lib/minitest/unit.rb', line 1315

def self.reset # :nodoc:
  @@test_suites = {}
end

.test_methodsObject

:nodoc:



1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
# File 'lib/minitest/unit.rb', line 1374

def self.test_methods # :nodoc:
  methods = public_instance_methods(true).grep(/^test/).map { |m| m.to_s }

  case self.test_order
  when :parallel
    max = methods.size
    ParallelEach.new methods.sort.sort_by { rand max }
  when :random then
    max = methods.size
    methods.sort.sort_by { rand max }
  when :alpha, :sorted then
    methods.sort
  else
    raise "Unknown test_order: #{self.test_order.inspect}"
  end
end

.test_orderObject

:nodoc:



1366
1367
1368
# File 'lib/minitest/unit.rb', line 1366

def self.test_order # :nodoc:
  :random
end

.test_suitesObject

:nodoc:



1370
1371
1372
# File 'lib/minitest/unit.rb', line 1370

def self.test_suites # :nodoc:
  @@test_suites.keys.sort_by { |ts| ts.name.to_s }
end

Instance Method Details

#assert_performance(validation, &work) ⇒ Object

Runs the given work, gathering the times of each run. Range and times are then passed to a given validation proc. Outputs the benchmark name and times in tab-separated format, making it easy to paste into a spreadsheet for graphing or further analysis.

Ranges are specified by ::bench_range.

Eg:

def bench_algorithm
  validation = proc { |x, y| ... }
  assert_performance validation do |n|
    @obj.algorithm(n)
  end
end


83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# File 'lib/minitest/benchmark.rb', line 83

def assert_performance validation, &work
  range = self.class.bench_range

  io.print "#{__name__}"

  times = []

  range.each do |x|
    GC.start
    t0 = Time.now
    instance_exec(x, &work)
    t = Time.now - t0

    io.print "\t%9.6f" % t
    times << t
  end
  io.puts

  validation[range, times]
end

#assert_performance_constant(threshold = 0.99, &work) ⇒ Object

Runs the given work and asserts that the times gathered fit to match a constant rate (eg, linear slope == 0) within a given threshold. Note: because we're testing for a slope of 0, R^2 is not a good determining factor for the fit, so the threshold is applied against the slope itself. As such, you probably want to tighten it from the default.

See www.graphpad.com/curvefit/goodness_of_fit.htm for more details.

Fit is calculated by #fit_linear.

Ranges are specified by ::bench_range.

Eg:

def bench_algorithm
  assert_performance_constant 0.9999 do |n|
    @obj.algorithm(n)
  end
end


127
128
129
130
131
132
133
134
135
# File 'lib/minitest/benchmark.rb', line 127

def assert_performance_constant threshold = 0.99, &work
  validation = proc do |range, times|
    a, b, rr = fit_linear range, times
    assert_in_delta 0, b, 1 - threshold
    [a, b, rr]
  end

  assert_performance validation, &work
end

#assert_performance_exponential(threshold = 0.99, &work) ⇒ Object

Runs the given work and asserts that the times gathered fit to match a exponential curve within a given error threshold.

Fit is calculated by #fit_exponential.

Ranges are specified by ::bench_range.

Eg:

def bench_algorithm
  assert_performance_exponential 0.9999 do |n|
    @obj.algorithm(n)
  end
end


153
154
155
# File 'lib/minitest/benchmark.rb', line 153

def assert_performance_exponential threshold = 0.99, &work
  assert_performance validation_for_fit(:exponential, threshold), &work
end

#assert_performance_linear(threshold = 0.99, &work) ⇒ Object

Runs the given work and asserts that the times gathered fit to match a straight line within a given error threshold.

Fit is calculated by #fit_linear.

Ranges are specified by ::bench_range.

Eg:

def bench_algorithm
  assert_performance_linear 0.9999 do |n|
    @obj.algorithm(n)
  end
end


193
194
195
# File 'lib/minitest/benchmark.rb', line 193

def assert_performance_linear threshold = 0.99, &work
  assert_performance validation_for_fit(:linear, threshold), &work
end

#assert_performance_logarithmic(threshold = 0.99, &work) ⇒ Object

Runs the given work and asserts that the times gathered fit to match a logarithmic curve within a given error threshold.

Fit is calculated by #fit_logarithmic.

Ranges are specified by ::bench_range.

Eg:

def bench_algorithm
  assert_performance_logarithmic 0.9999 do |n|
    @obj.algorithm(n)
  end
end


173
174
175
# File 'lib/minitest/benchmark.rb', line 173

def assert_performance_logarithmic threshold = 0.99, &work
  assert_performance validation_for_fit(:logarithmic, threshold), &work
end

#assert_performance_power(threshold = 0.99, &work) ⇒ Object

Runs the given work and asserts that the times gathered curve fit to match a power curve within a given error threshold.

Fit is calculated by #fit_power.

Ranges are specified by ::bench_range.

Eg:

def bench_algorithm
  assert_performance_power 0.9999 do |x|
    @obj.algorithm
  end
end


213
214
215
# File 'lib/minitest/benchmark.rb', line 213

def assert_performance_power threshold = 0.99, &work
  assert_performance validation_for_fit(:power, threshold), &work
end

#fit_error(xys) ⇒ Object

Takes an array of x/y pairs and calculates the general R^2 value.

See: en.wikipedia.org/wiki/Coefficient_of_determination



222
223
224
225
226
227
228
# File 'lib/minitest/benchmark.rb', line 222

def fit_error xys
  y_bar  = sigma(xys) { |x, y| y } / xys.size.to_f
  ss_tot = sigma(xys) { |x, y| (y    - y_bar) ** 2 }
  ss_err = sigma(xys) { |x, y| (yield(x) - y) ** 2 }

  1 - (ss_err / ss_tot)
end

#fit_exponential(xs, ys) ⇒ Object

To fit a functional form: y = ae^(bx).

Takes x and y values and returns [a, b, r^2].

See: mathworld.wolfram.com/LeastSquaresFittingExponential.html



237
238
239
240
241
242
243
244
245
246
247
248
249
250
# File 'lib/minitest/benchmark.rb', line 237

def fit_exponential xs, ys
  n     = xs.size
  xys   = xs.zip(ys)
  sxlny = sigma(xys) { |x,y| x * Math.log(y) }
  slny  = sigma(xys) { |x,y| Math.log(y)     }
  sx2   = sigma(xys) { |x,y| x * x           }
  sx    = sigma xs

  c = n * sx2 - sx ** 2
  a = (slny * sx2 - sx * sxlny) / c
  b = ( n * sxlny - sx * slny ) / c

  return Math.exp(a), b, fit_error(xys) { |x| Math.exp(a + b * x) }
end

#fit_linear(xs, ys) ⇒ Object

Fits the functional form: a + bx.

Takes x and y values and returns [a, b, r^2].

See: mathworld.wolfram.com/LeastSquaresFitting.html



282
283
284
285
286
287
288
289
290
291
292
293
294
295
# File 'lib/minitest/benchmark.rb', line 282

def fit_linear xs, ys
  n   = xs.size
  xys = xs.zip(ys)
  sx  = sigma xs
  sy  = sigma ys
  sx2 = sigma(xs)  { |x|   x ** 2 }
  sxy = sigma(xys) { |x,y| x * y  }

  c = n * sx2 - sx**2
  a = (sy * sx2 - sx * sxy) / c
  b = ( n * sxy - sx * sy ) / c

  return a, b, fit_error(xys) { |x| a + b * x }
end

#fit_logarithmic(xs, ys) ⇒ Object

To fit a functional form: y = a + b*ln(x).

Takes x and y values and returns [a, b, r^2].

See: mathworld.wolfram.com/LeastSquaresFittingLogarithmic.html



259
260
261
262
263
264
265
266
267
268
269
270
271
272
# File 'lib/minitest/benchmark.rb', line 259

def fit_logarithmic xs, ys
  n     = xs.size
  xys   = xs.zip(ys)
  slnx2 = sigma(xys) { |x,y| Math.log(x) ** 2 }
  slnx  = sigma(xys) { |x,y| Math.log(x)      }
  sylnx = sigma(xys) { |x,y| y * Math.log(x)  }
  sy    = sigma(xys) { |x,y| y                }

  c = n * slnx2 - slnx ** 2
  b = ( n * sylnx - sy * slnx ) / c
  a = (sy - b * slnx) / n

  return a, b, fit_error(xys) { |x| a + b * Math.log(x) }
end

#fit_power(xs, ys) ⇒ Object

To fit a functional form: y = ax^b.

Takes x and y values and returns [a, b, r^2].

See: mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html



304
305
306
307
308
309
310
311
312
313
314
315
316
# File 'lib/minitest/benchmark.rb', line 304

def fit_power xs, ys
  n       = xs.size
  xys     = xs.zip(ys)
  slnxlny = sigma(xys) { |x, y| Math.log(x) * Math.log(y) }
  slnx    = sigma(xs)  { |x   | Math.log(x)               }
  slny    = sigma(ys)  { |   y| Math.log(y)               }
  slnx2   = sigma(xs)  { |x   | Math.log(x) ** 2          }

  b = (n * slnxlny - slnx * slny) / (n * slnx2 - slnx ** 2);
  a = (slny - b * slnx) / n

  return Math.exp(a), b, fit_error(xys) { |x| (Math.exp(a) * (x ** b)) }
end

#ioObject

Return the output IO object



1303
1304
1305
1306
# File 'lib/minitest/unit.rb', line 1303

def io
  @__io__ = true
  MiniTest::Unit.output
end

#io?Boolean

Have we hooked up the IO yet?



1311
1312
1313
# File 'lib/minitest/unit.rb', line 1311

def io?
  @__io__
end

#passed?Boolean

Returns true if the test passed.



1394
1395
1396
# File 'lib/minitest/unit.rb', line 1394

def passed?
  @passed
end

#run(runner) ⇒ Object

Runs the tests reporting the status to runner



1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
# File 'lib/minitest/unit.rb', line 1239

def run runner
  trap "INFO" do
    runner.report.each_with_index do |msg, i|
      warn "\n%3d) %s" % [i + 1, msg]
    end
    warn ''
    time = runner.start_time ? Time.now - runner.start_time : 0
    warn "Current Test: %s#%s %.2fs" % [self.class, self.__name__, time]
    runner.status $stderr
  end if runner.info_signal

  start_time = Time.now

  result = ""
  begin
    @passed = nil
    self.before_setup
    self.setup
    self.after_setup
    self.run_test self.__name__
    result = "." unless io?
    time = Time.now - start_time
    runner.record self.class, self.__name__, self._assertions, time, nil
    @passed = true
  rescue *PASSTHROUGH_EXCEPTIONS
    raise
  rescue Exception => e
    @passed = Skip === e
    time = Time.now - start_time
    runner.record self.class, self.__name__, self._assertions, time, e
    result = runner.puke self.class, self.__name__, e
  ensure
    %w{ before_teardown teardown after_teardown }.each do |hook|
      begin
        self.send hook
      rescue *PASSTHROUGH_EXCEPTIONS
        raise
      rescue Exception => e
        @passed = false
        runner.record self.class, self.__name__, self._assertions, time, e
        result = runner.puke self.class, self.__name__, e
      end
    end
    trap 'INFO', 'DEFAULT' if runner.info_signal
  end
  result
end

#setupObject

Runs before every test. Use this to set up before each test run.



1402
# File 'lib/minitest/unit.rb', line 1402

def setup; end

#sigma(enum, &block) ⇒ Object

Enumerates over enum mapping block if given, returning the sum of the result. Eg:

sigma([1, 2, 3])                # => 1 + 2 + 3 => 7
sigma([1, 2, 3]) { |n| n ** 2 } # => 1 + 4 + 9 => 14


325
326
327
328
# File 'lib/minitest/benchmark.rb', line 325

def sigma enum, &block
  enum = enum.map(&block) if block
  enum.inject { |sum, n| sum + n }
end

#teardownObject

Runs after every test. Use this to clean up after each test run.



1408
# File 'lib/minitest/unit.rb', line 1408

def teardown; end

#validation_for_fit(msg, threshold) ⇒ Object

Returns a proc that calls the specified fit method and asserts that the error is within a tolerable threshold.



334
335
336
337
338
339
340
# File 'lib/minitest/benchmark.rb', line 334

def validation_for_fit msg, threshold
  proc do |range, times|
    a, b, rr = send "fit_#{msg}", range, times
    assert_operator rr, :>=, threshold
    [a, b, rr]
  end
end